Abacus junior Abacus junior vet Abacus junior B

Hematology Analyzer Service Manual

3.0 release

DIATRON Messtechnik Ges.m.B.H. A-1141 Wien, Ameisgasse 49-51/2. AUSTRIA Tel.: (431) 914-85-00, 911-38-48 Fax: 914-85-07-15 Web: www.diatron.com E-mail: support@diatron.com

TABLE OF CONTENTS

1.	INT	RODUCTION	4
	1.1.	NAME AND SERIAL NUMBER	4
	1.2.	INTENDED USE	4
	1.3.	INTEGRATED SOFTWARE	5
2.	FUN	NCTIONAL DESCRIPTION	6
	2.1	MAIN ELECTRONIC DARTS OF THE ANALYZERS	6
	2.1.	I Counting chamber with electrodes and measuring aperture	0 8
	2.1.2	2. HGB Head.	
	2.1.3	3. Cell counter Amplifier Board	9
	2.1.4	4. Control and Measurement Board (COMB) with Dimm-PC core - AJ/AJvet	
	2.1.5	5. Dimm-PC* Module – AJ/AJvet	11
	2.1.0	6. Configuration and ID E2 PROM board (IDEPROM) - AJ/AJvet	11
	2.1.2	7. Pneumatic and Power Board (PPB) - AJ/AJvet	
	2.1.8	8. Opto-boards for stepper motors	12
	2.1.5	9. Valve Doaras	13 14
	2.1.1	10. Fressure sensor	14 1 <i>4</i>
	2.1.	12. LCD Display Module with High Voltage Board of AJ/AJvet	
	2.1.	13. LCD Display Module with High Voltage Board of Abacus Junior B	
	2.1.	14. Keypad of Abacus junior/Abacus junior vet	
	2.1.	15. Keypad of Abacus junior B	
	2.1.	16. Floppy Disk Drive and CD-ROM Drive - AJ/AJvet	18
	2.1.	17. External Power Supply	19
	2.1.1	18. MAIN board - AJB	
	2.2.	MAIN MECHANIC AND FLUIDIC PARTS OF THE ANALYZER	
	2.2.1	1. Sample rotor	22 22
	2.2.2	2. Sumpting needle	
	2.2.4	4. H&V moving unit	
	2.2.3	5. Main Dilutor	
	2.2.0	5. Micro Dilutor	25
	2.2.2	7. Puffer reservoir	25
	2.2.8	8. Pump	25
	2.3.	ASSEMBLED ANALYZER	
	2.3.	I. Abacus junior / Abacus junior vet	
	2.3.2	2. Abacus junior B	
3.	OPI	ERATION OF THE FLUIDIC SYSTEM	
	3.1.	FLOW DIAGRAM OF MEASUREMENT	
	3.2.	INITIALIZATION OF THE FLUIDIC SYSTEM	
	3.3.	SAMPLING PROCESS	
	3.4.	NEEDLE WASHING PROCESS	
	3.5.	DILUTING PROCESS	
	3.6.	LYSING PROCESS	
	3.7.	COUNTING PROCESS	
	3.8. 3.9	CLEANING DROCESS	4141 10
	3.10	SHUTDOWN PROCESS	
4.	AD.	IUSTMENT	43
	4.1.	MECHANICAL SETTINGS	43
	4.1.	1. Opto wheel setting	
	4.1.2	2. Sampling needle setting	
	4.2.	HARDWARE SETTINGS	
	4.2.	Amplifier offset setting	

5.	CHECKI	NG THE PROPER OPERATION	45
	5.1. Self	TEST OF ABACUS JUNIOR AND VET	45
	5.1.1.	Self test Screens (AJ/AJvet)	45
	5.1.2.	Normal range of Self Test parameters (AJ/AJvet)	
	5.1.3.	Troubleshooting Guide for Self test	46
	5.2. Self	TEST OF ABACUS JUNIOR B	47
	5.2.1.	Self Test Menu	47
	5.2.2.	Normal range of Self Test parameters (AJB)	
	5.3. SERV	/ICE MENU - AJ/AJVET	
	5.3.1.	Entering to Service Menu	
	5.3.2.	Main Service Menu	
	5.3.3.	Edit service contact	
	5.3.4.	Device Information	
	5.3.5.	Service Calibration	51
	5.3.6.	Software Settings	51
	5.3.7.	Service Testing Menu	
	5.3.8.	Valve Test Menu	
	5.3.9.	Display and Keyboard Test	53
	5.3.10.	Stress Mode	
	5.3.11.	Miscellaneous Settings	
	5.3.12.	Multi-user Rescue Code	
	5.4. SERV	VICE MENU (AJB)	
	5.4.1.	MAIN Service Menu	
	5.4.2.	Service Calibration of Abacus Junior B	
6.	SERVIC	E OPERATION	57
	(1) Open		57
	6.1. UPE	NING THE INSTRUMENT	
	6.2. MD/	A (MONOCHROME DISPLAY ADAPTER) EMULATION MODE – AJ/AJVET	
	0.3. KEY	DIOS SETTINGS FOR CORRECT OPERATION – $AJ/AJVET$	
	6.5 BIO	NING THE DIOS SETUP – AJ/AJVET	
	6.5. DOS	S - DESCRIPTION - AJ/AJVET	
	0.0. DOC 6.7 EDD	FUNCTIONS ON THE INSTRUMENT – $AJ/AJVET$	01
	671	Abacus Junior / Abacus Junior Vat arror code list	01
	672	Abacus Junior / Abacus Junior Vet message code list	02 65
	68 WAT	Addeus Junior / Addeus Junior ver message code usi	05
	60 0.0	ININGS AND ERROR CODES FOR ADACUS JUNIOR D	
	601	Contaminated reagont	
	0.9.1. 6 0 2	Dad and show the	
	0.9.2.	Baa earth grounding	
	0.9.3.	External electrical noise	
	0.9.4.	Internal noise sources	
7.	MAINTE	NANCE	71
	7.1. Wee	KLY MAINTENANCE BY USER	71
	7.1.1.	Cleaning the washing head	71
	7.2. Peri	ODIC MAINTENANCE BY SERVICE	71
	7.2.1.	Check Self test and Device statistics	71
	7.2.2.	Cleaning and Greasing Dilutor Block	71
	7.2.3.	Checking and Lubricating Dilutor Piston Tips	71
	7.2.4.	Cleaning and Lubricating Needle Moving Mechanics	71
	7.2.5.	Checking and Replacing Washing Head	71
	7.2.6.	Checking and Replacing Peristaltic Pump Tube	71
	7.2.7.	Checking of the Power Supply	72
	7.2.8.	Bleaching of Fluidic System	72
8.	SPARE P	ARTS	73

9. API	ENDICES	
9.1.	WARNING FLAGS - AJ/AJVET ONLY	
9.2.	SERIAL COMMUNICATION PROTOCOL	77
9.2.	. General Description	
9.2.	P. Format of Packages Sent	
9.2	B. Format of Acknowledge of the Receiver	
9.2.	4. Detailed Description of Packages	
9.3.	UPLOADER: SOFTWARE UPGRADING TOOL FOR ABACUS JUNIOR B	
9.3.	Process of SW download (AJB)	
9.3.	2. Troubleshooting of SW download (AJB)	
9.4.	ABACUS JUNIOR CABLING DIAGRAM - AJ/AJVET	
9.5.	ABACUS JUNIOR B CABLING DIAGRAM - AJB	
9.6.	ABACUS JUNIOR / ABACUS JUNIOR B TUBING SCHEMATICS - AJ/AJB	
9.7.	ABACUS JUNIOR VET TUBING SCHEMATICS - AJVET	
9.8.	RECOMMENDED KIT OF TOOLS	
9.9.	ELECTRONIC SCHEMATICS	

1. INTRODUCTION

Since **Abacus junior / Abacus junior vet / Abacus junior B** have so much common characteristics, we issue a common Service Manual covering all instruments. Information herein applies for all instruments unless otherwise noted.

To be well up in the instruments, **please read this manual carefully** to have the knowledge for servicing the instruments perfectly and avoid extra costs and wasting precious time.

In this manual, we are using the following conventions:

AJ – stands for Abacus junior AJvet – stands for Abacus junior vet AJB – stands for Abacus junior B

This **Abacus junior / Abacus junior vet / Abacus junior B Service Manual** contains the functional descriptions of all analyzers, operation of the fluidic systems, adjustments and settings, and very important information for the Service Personnel about the service operations and possible problems.

1.1. Name and serial number

Name: Abacus junior / Abacus junior vet / Abacus junior B Hematology Analyzer Serial No.: Every instrument has its own serial number, which is printed on the rear panel label and it can be read out from Device Information or from the self test submenu. This identity number is write-protected by DIATRON.

1.2. Intended use

Abacus junior / Abacus junior vet / Abacus junior B hematology analyzers are fully automated cell counters for *in vitro* diagnostic use. The compact instruments were developed for small clinics, point-of-cares and vet offices.

Abacus junior can process 30, **Abacus junior vet** can process 20-25 samples per hour and they are intended to determine the following 18 hematology parameters from a 25µl whole blood sample:

- WBC LYM# MID# GRA# LYM% MID% GRA% (three-part WBC differential)
- HGB RBC HCT MCV RDW MCH MCHC
- PLT MPV PCT PDW

Abacus junior B can process 30 samples per hour and intended to determine the following 12 hematology parameters from a 25µl whole blood sample:

- WBC
- HGB RBC HCT MCV RDW-cv MCH MCHC
- PLT MPV PCT PDW-cv

1.3. Integrated software

The integrated software controls the instrument operations, displays, stores, recalls data, and allows the user to perform QC and calibration procedures and modify the user settings. The software version number can be read out from the Device Information or from the Self test submenu.

Software is absolutely *"Plug and Play"*, it can read out and detect the type and the serial number of the instrument, therefore it will run the correct program for the hardware, without any user or service help. Every **Abacus junior / Abacus junior vet** software version is upgradeable (using a floppy disk) by the latest program developed by DIATRON.

Software upgrade of **Abacus Junior B** requires a special SW downloading application (more about this in Section 9.3) running on a separate PC, a standard null-modem serial cable – with 9-pin connector, and an upgrade SW from web page of DIATRON:

www.diatron.com

2. FUNCTIONAL DESCRIPTION

2.1. Main electronic parts of the analyzers

Abacus junior / Abacus junior vet contains the following electronic parts:

- 1. Counting chamber with electrodes and measuring aperture
- 2. HGB Measuring Head
- 3. Cell Counter Amplifier Board (behind the chamber)
- 4. CPU Board with Dimm-PC and measurement processing unit (COMB Board)
- 5. Safe configuration E²PROM board connecting CPU board and PPB
- 6. Pneumatic and Power Board with 6 motor controllers, valve & pneumatic controller, pump driver and power supply for internal printer (+8V) and digital circuitry (+5V)
- 7. Motors with common opto-board of needle moving motors (H/V) and sample rotor
- 8. Main dilutor block with opto-board for diluent, lyse and rinse (AJVet)
- 9. Micro-dilutor block with opto-board for sampling
- 10. Valve boards (set of 5 and max. 7)
- 11. Peristaltic Pump
- 12. Pressure Sensor
- 13. Digital Reagent Sensor Board
- 14. Floppy Disk Drive and CD-ROM Drive (optional)
- 15. Graphic LCD Display Module with High Voltage Board
- 16. LCD and Keyboard controller and Keyboard Panel
- 17. Internal Printer

Abacus junior / Abacus junior vet Electronic Functional Block Diagram

Abacus junior B contains the following electronic parts:

- 1. Counting chamber with electrodes and measuring aperture
- 2. HGB Measuring Head
- 3. Cell Counter Amplifier Board (behind the chamber)
- 4. Motors with common opto-board of needle moving motors (H/V) and sample rotor
- 5. Main dilutor block with opto-board for diluent and lyse
- 6. Micro-dilutor block with opto-board for sampling
- 7. Valve boards (set of 5)
- 8. Peristaltic Pump
- 9. Pressure Sensor
- 10. Digital Reagent Sensor Board
- 11. Alphanumeric LCD Display Module with High Voltage Board
- 12. Keyboard Panel
- 13. Internal Printer
- 14. MAIN board

Abacus junior B Electronic Functional Block Diagram

2.1.1. Counting chamber with electrodes and measuring aperture

Impedance method is used for determination of volume and number of cells. In this method a known volume of dilution is drawn through a small aperture. Constant current is passed through the aperture from one side to the other. When a cell passes through the aperture, it causes a change in resistance, which generates a voltage pulse.

The amplitude of the voltage pulse is proportional to the ratio of cell volume per aperture volume. This is used to determine the volume of cells. The number of cells can be obtained by counting the pulses.

In the instruments there is one cell-counter probe: the aperture size is 80 μ m and has a reference electrode assembly and U-shaped metal fixing as it is shown in the figure below.

The aperture is made of ruby and it is molded into the measuring tube.

2.1.2. HGB Head

Hemoglobin head is placed around the measuring chamber in all instruments.

It contains: light source (LED) at 540 nm wavelength and Photo Detector (TSL235). The Photo Detector converts the light to frequency. The HGB concentration is a logarithmic function of this frequency measured by

- the FPGA circuit of the COMB card in AJ/AJvet
- the micro-controller of the MAIN board in AJB

The analyzers perform enhanced Hemoglobin measurement technology for HGB measurement. The output of HGB head is frequency (TSL235 detector is light to frequency converter). This signal is counted by a digital counter in the FPGA circuit/micro-controller.

This counter counts up while the LED is on and counts down while the LED is off, the LED and the counter directions are switched with a 100 Hz signal. This method provides "real time backlight correction", which makes the HGB measurement more precise in changing backlight environment situation as well.

There are two kinds of HGB measurements:

- Sample measurement
 (before RBC counting)
- Diluent measurement (in WBC washing phase)

The HGB result is calculated from these measurements by:

 $HGB \cong log (CNT_{diluent light} / CNT_{sample light})$

Due to enhanced HGB technology, junior is less sensitive to incident light changes. It is recommended to keep side door closed during measurements.

2.1.3. Cell counter Amplifier Board

Amplifier board includes its own voltage regulator, connection interfaces to HGB head, to high voltage board and to COMB in **AJ/AJvet** (to MAIN in **AJB**). In this board there is a current generator circuit, which works from 50V measuring voltage (generated by High Voltage Board) and the probe voltage (DC) is amplified with a voltage follower (output: ELV). Nominal measuring current is **870 \muA**.

Amplifier board includes one input connector for the chamber (measuring electrode). There are two opto switches (U1, U3) to connect high voltage to the probe with HSW signal and isolate the input of the amplifier. Test circuit makes possible to generate test pulses (with TEST and PLS signals through FETs) for checking the proper operation of the amplifier channel.

Amplifier board includes a 3-stage main amplifier channel, which gains input signal to the 0...5 V range (this is the input range of the A/D converter, which is placed on the COMB card). The RSW signal changes the gain (RBC, WBC) in the feedback of the second amplifier stage with U2 (MAX319) analog switch. There is an offset potentiometer, P1 in the third amplifier stage, manufacturer sets the correct offset voltage.

Adjust the offset voltage only in case it is out of the +/- 5mV range.

DHON signal (from the COMB board - **AJ/AJvet**; from the MAIN board - **AJB**) switches on the LED and the MVON signal – which is active during counting – switches off the Photo Detector in the HGB head, to prevent noise generated by the HGB detector.

The other side of the amplifier board contains special connectors for the chamber and the HGB head (JP4).

2.1.4. Control and Measurement Board (COMB) with Dimm-PC core - AJ/AJvet

The compact **COMB** incorporates a single PC and its environmental functions, as well as the specific measurement processing functions in one board.

PC system of the COMB board is based on the Dimm-PC module, which is a credit card size PC with AMD Elan SC520 133 MHz micro-controller. Dimm-PC itself contains 16 or 32Mbyte RAM and same size of SanDisk that acts like a hard disk. Dimm-PC module is easily replaceable as it has an open socket (it has also a screw for safe fixing). COMB card contains single ICs and some drivers/protection-circuits for the interfaces such as LPT, COM1, PS2, USB, IDE, Floppy and Speaker.

Measurement processing is based on FPGA circuit. After power on, FPGA holds the Dimm-PC in wait state (with –IOCHRDY signal) until the PIC configures the FPGA circuit from the IDEPROM (status LED is red during configuration). After that the FPGA controls the entire pneumatic system through the Pneumatic I²C bus, the Keyboard and Display module with video RAM for MDA (Monochrome Display Adapter) emulation, and Start button & status LED. FPGA circuit also performs measurement data acquisition by using the 10-bit A/D chip. FPGA makes digital data processing and stores the results in the internal FIFO memory. Cell parameters are sent to the Dimm-PC by single DMA cycles.

2.1.5. Dimm-PC* Module – AJ/AJvet

The MB4 board incorporates a credit-card sized PC, named **Dimm-PC***. The processor on the Dimm-PC is a 133MHz Pentium-class core, with 32Mbytes on-board RAM, and 32Mbytes on-board SanDisk. This is the HDD (hard disk drive) of the analyzer, so instrument software with all user settings, calibration, database, etc. is stored on the Dimm-PC.

* DimmPC® is the Trade Mark of Kontron Embedded Modules GmbH

2.1.6. Configuration and ID E²PROM board (IDEPROM) - AJ/AJvet

This board is the interconnection between COMB and PPB cards: Pneumatic I^2C bus, power lines and internal printer signals are connected through this card. The board also contains a 24FC256 serial E²PROM, which stores the FPGA's configuration data and identity information of the instrument (Serial Number, OEM, model, etc.).

Keeping the hardware identity information (write-protected), IDEPROM makes possible to run the correct software (Human or Vet).

2.1.7. Pneumatic and Power Board (PPB) - AJ/AJvet

PPB card contains the main power regulator circuits, valve and motor driver circuits and other connections for the fluidic and pneumatic system's parts.

Power system generates +5V (Digital power), +8V (Printer power) and +12V (Motor and valve power) from the single +12V DC input signal.

Motor driver part consists of six separated PIC micro-controllers with power drivers. Horizontal, Vertical and Sample rotor motors have one combined ribbon cable connection. Main Dilutor (with two motors) and Micro-dilutor have separated connectors.

Valve driver section is based on the valve driver PIC micro-controller and two 8-bit, powered output shift registers (with built in protection diodes) and there is one common ribbon cable connection for the valve boards. The peristaltic pump has a separated Darlington driver circuit for more reliable operation.

2.1.8. Opto-boards for stepper motors

There are six stepper motors in the system: Horizontal and Vertical motors, which make the movements of the sampling needle; the main Dilutor motors (2), which move the syringes (macro, lyse, rinse); the micro Dilutor motor, which drives the sampling phase and the motor moving the sample rotor. The stepper motor opto boards make the connections between the motor driver ICs and motors, and have opto switches for the motor's home and end positions. The actual status of the stepper motor's optos is indicated by two LEDs on each stepper motor opto boards.

Dilutor and Micro-dilutor have its own separated opto-board, located directly in the units.

Horizontal and Vertical motors and the sample rotor unit have a common Opto-board, called XYOpto Board:

The other side of the board contains the connection for the Sample rotor and a ribbon cable connection to the COMB (AJ/AJvet) or to the MAIN board (AJB).

2.1.9. Valve boards

There are two kinds of valve boards: Valve board 1-5 and Valve board 6-12.

AJ and AJB have 5 valves, while AJvet has 6 valves in Valve board 6-12 module. The valve boards are connected to controller and driver chips are located on the PPB.

2.1.10. Pressure Sensor

This is an MPX5100AP calibrated pressure sensor, which can measure the required air pressure and vacuum. The Pressure Sensor is connected directly to the PPB card (AJ/Ajvet) or to the MAIN board (AJB).

The pressure sensor can operate from +5V only. It is a calibrated sensor with 0-1.1 Bar input range. Do not apply more than 1.5 Bar to it, because it can ruin the pressure sensor.

2.1.11. Digital Reagent Sensor Board

This board contains four liquid detector opto-detectors (optos) and a reference opto for automatic temperature and stray light compensation. The reference opto is located in the middle and it has the same temperature and backlight conditions as the sensing ones.

The Reagent Sensor Board is connected to the PPB card in **AJ/AJvet**, and the valve driver micro-controller makes the sensing and compensating operations. In **AJB**, this board is connected to the MAIN board and the micro-controller controls the operation of the Reagent Sensor Board.

Instrument makes automatic initialization – called calibration – of reagent sensors during priming phase of fluidics.

2.1.12. LCD Display Module with High Voltage Board of AJ/AJvet

Display assembly contains the 240x128 dots graphics LCD display and the high voltage board. LCD has a high voltage backlight lamp (high voltage board generates the required voltage).

There is a special temperature compensation circuit in the display module, which makes possible to use the LCD module in wide temperature ranges with the adjusted contrast.

High Voltage Board (HVB) generates LCD backlight voltage (300V), aperture cleaning voltage (150V), and measuring voltage (50V). The high voltage board is connected to the system through the amplifier board and the COMB card. This unit contains INVC191 inverter, which is a high voltage, high frequency circuit producing suitable voltage for CCFL (cold cathode fluorescent lamp) of the LCD.

The CFSW digital signal (from the COMB card) controls HVB: logical LOW turns inverter on. The MVON digital signal (from the COMB card) switches the measuring voltage (50 V) on/off by O1 opto switch.

Warning! Be careful with servicing this board in active state, because the high voltage (300V) at LCD lamp connector can cause damages or electric shock.

Never operate the analyzer without the LCD backlight connected to the HVB, because the over-voltage on the output of the HVB can damage the HVB board and the amplifier.

Connection to COMB and amplifier

In Abacus Junior B, we needed a new high voltage board, because in this instrument there's no need for the inverter on the previous HVB (the alphanumeric display has no CCFL backlight), but the measuring and cleaning voltage generation based on the inverter's high voltage. That's why we developed HVB v2.1, which is still capable to carry and feed the inverter, but the board has its own high voltage generation circuitry, so can be used without the inverter placed on it.

HVB v2.1:

Start key is a micro-switch, connected to the COMB card (through the Display ribbon cable). The status LED indicates the actual status of the analyzer and it has three colors: red, green and amber (See User's Manual). The LED has three pins and the actual color depends on the controlled pins. Start key and status LED are controlled by COMB.

2.1.13. LCD Display Module with High Voltage Board of Abacus Junior B

The display assembly in Abacus Junior B contains a 4x20 characters alphanumeric display, a high voltage board, a Start key and status LED board. The alphanumeric display has internal LED based backlight, which is driven and controlled by the MAIN board.

High Voltage Board (HVB) generates the aperture cleaning voltage (150V), and measuring voltage (50V). The high voltage board is connected to the system through the amplifier board and the MAIN board.

CFSW signal (from MAIN board) controls HVB: logical LOW turns inverter on. MVON signal (from MAIN board) switches the measuring voltage (50 V) on/off by O1 opto switch.

Warning! Be careful with servicing this board in active state, because the high voltage can make damages or electric shock!

Start key is a micro-switch, connected to the MAIN board (through the Display ribbon cable). The status LED indicates the actual status of the analyzer and it has three colors: red, green and amber (See User's Manual). The LED has three pins and the actual color depends on the controlled pins. The MAIN board controls start key and status LED.

In Abacus Junior B the LCD controlling and keypad reading are handled by the microcontroller of the MAIN board via some interface circuitry.

2.1.14. Keypad of Abacus junior/Abacus junior vet

The analyzer has a 29-button **foil keypad** including numerical keypad (0-9, "."), cursor moving, OK and Del buttons, and 6-6 function buttons, above and under the LCD display as it is shown in the picture below:

2.1.15. Keypad of Abacus junior B

The analyzer has a 21-button **foil keypad** including numerical keypad (0-9, "."), OK and Del buttons, and 4-4 function buttons, above and under the LCD display as it is shown in the picture below:

2.1.16. Floppy Disk Drive and CD-ROM Drive - AJ/AJvet

The built-in Floppy Disk Drive makes possible to save data on floppy disks, and to install (or upgrade) the software. The optional CD-ROM drive can be used to install software (only read actions from CD-ROM, as write operations are not supported by the instrument's operating system). Both units are connected to COMB card: CD-ROM to IDE interface, FDD to Floppy interface.

2.1.17. External Power Supply

The analyzer works with an external power supply. The next figure shows the power supply unit generating 12VDC.

The power supply modules have an auto range input, which makes possible to use them with 230V or 115V mains outlet and it has the CE and UL safety certification. The input socket of the power supply is a standard 3-terminal plug, with power cable connection; the output is a special, lockable socket as it is shown in the picture.

2.1.18. MAIN board - AJB

MAIN board is responsible to control the instrument: contains the main power regulator circuits, valve and motor driver circuits and other connections for the fluidic and pneumatic system's parts, responsible for the specific measurement processing functions.

The board also contains two 24FC256 serial E²PROMs, which store the settings and identity information of the instrument (Serial Number, OEM, model, etc.) and the measurement database.

The central micro-controller with a CPLD and with several other digital chips (buffers, decoder, multiplexer) handles the pneumatic system, displaying, measurement and data management.

Power system: filtering the +12V Input and generates +3.3V (CPLD), +5V (Digital power), +8V (Printer power). Filtered +12V is used for the power of motors and valves.

Motor drivers: 6 power drivers; Horizontal, Vertical and Sample rotor motors have one combined ribbon cable connection. Main Dilutor (with two motors) and Micro-dilutor have separated connectors.

Valve driver: consists two 8-bit, powered output shift registers (with built in protection diodes) and there is one common ribbon cable connection for the valve boards. The peristaltic pump has a separated Darlington driver circuit for more reliable operation.

Real Time Clock: for TIME/DATE functions; powered by Battery at switched off state.

Measurement processing: the A/D conversion made by the micro-controller itself, but several preprocessing steps (time limits, noise handling, pulse integration) taken by the external analog circuitry.

External communication through RS232 makes possible to update the firmware of the microcontroller with an external PC.

2.2. Main mechanic and fluidic parts of the Analyzer

Abacus junior / Abacus junior vet / Abacus junior B Hematology Analyzers consist of the following mechanic and fluidic parts:

- 1. Sample rotor
- 2. Sampling needle
- 3. Washing head
- 4. H&V moving unit
- 5. Micro Dilutor
- 6. Dilutor
- 7. Chamber
- 8. Cell-counter probe
- 9. Puffer reservoir
- 10.Pump
- 11.Valves
- 12.Tubing

The main fluidic schematics are almost the same for the three models. The only exception is the Rinse reagent and the corresponding Rinse syringe and Rinse valve (V11), which is present for the **AJvet** model only.

2.2.1. Sample rotor

Abacus junior / Abacus junior vet / Abacus junior B hematology Analyzers has a sample rotor for safety and more precise sample handling. Commonly used sample tubes are supported by replaceable tube adapters.

The Sample rotor unit uses a stepper motor, connected to the PPB (**AJ/AJvet**) or to the MAIN board (**AJB**), through the XY opto board. The rotor has micro switches for positioning.

The unit blocks itself in the home and end position with mechanical parts and has a special cap that prevents the damage of the electronic and mechanic parts caused by any fluid.

Sample rotor is maintenance-free.

Replaceable tube adapter

Micro switches for positioning

2.2.2. Sampling needle

Sampling needle is assembled in the H&V moving unit and it makes the sample aspirations. Correct setting of sampling needle is necessary and very important (see Chapter Adjustments).

2.2.3. Washing head

Washing head is located at the bottom of the H&V moving unit and it is for cleaning the outer surface of the sampling needle. This washing process is made with diluent reagent and the fluid is drained by the pump. The arrows on the picture show the direction of diluent flow during sampling needle washing.

Clean or replace washing head yearly, or after 10 000 measurements.

2.2.4. H&V moving unit

All three instruments use the same H&V moving unit.

This unit contains slides to move the sample sampling needle in Horizontal and Vertical directions, two stepper motors, XYR opto board, opto wheel, washing head and the sampling needle. It moves the needle to the desired position: from sampling position, to washing head, and to the measuring chamber.

Both stepper motors have optical end-switch sensors for detecting these positions. These are required for correct initialization and error detection. All sensors have status LEDs to show actual conditions.

The Vertical motor works with a special opto wheel for detecting home & end positions. See the Adjustment section of this manual to place this wheel to the proper position.

Greasing of the horizontal/vertical guiding rods should be done regularly using "Photorub", a PTFE-based thin lubricant.

It is recommended to check and repeat greasing of guiding rods every year, or after 10000 measurements.

2.2.5. Main Dilutor

In case of AJ and AJB this unit includes two dilutor channels – one for diluent, and another one for lyse reagents. (There's another channel for Rinse in the AJvet model). There are two stepper motors, a common motor opto board, three (AJ/AJB) or four (AJvet) syringes and piston rods with gear transmission.

Maintenance should be provided to the piston tips, by applying neutral silicon grease to the cogged end of the Macro and Lyse pistons, between the syringe and the tip itself. This will ensure optimum sealing and longer lifetime of piston tips.

Greasing of the cogged transmission parts (cogwheel and cogged bar) should be done regularly using machine grease.

It is recommended to check and repeat greasing of piston tips, and transmission gear every year, or after 10000 measurements.

2.2.6. Micro Dilutor

Micro dilutor is taking the precise sample (25 or 50μ l) into the sampling needle. It includes a stepper motor, a motor opto board and the micro syringe.

2.2.7. Puffer reservoir

The glass puffer reservoir is directly connected to the pressure sensor.

During measurement, there is no pump activity, so the puffer reservoir maintains measuring vacuum stable. The instrument measures atmospheric pressure and adjusts measuring vacuum according to it.

2.2.8. Pump

Pump generates regulated vacuum and drains the fluidic system. It is connected to the PPB (**AJ/AJvet**) or to the MAIN board (**AJB**) and it has its own driver circuit (Darlington). If the tube of the peristaltic pump becomes worn, it can be broken, causing Pressure error.

It is recommended to check the state of the tube, and replace it every 2 years, or after 20 000 measurements. Always replace the peristaltic pump tube to the same PharMed® type, with the same length.

For servicing the tube of the pump, open the peristaltic pump from its top (see picture) and remove the tube together with the white plastic side wall (see picture):

In case of damaged tubes, it can be replaced by a new one by opening the two metal locks located at the two ends of the tube (see picture).

2.3. Assembled Analyzer

2.3.1. Abacus junior / Abacus junior vet

Front Panel (note display logo: it is an Abacus Junior model; and missing optional CD-ROM drive module):

Rear panel (note reagent inlets: it is an Abacus Junior model as there is no Rinse connection):

Construction - front (note optional CD-ROM drive):

Construction – right side (note white reagent inlet for Rinse: it is an Abacus Junior Vet model):

Construction – back (note white reagent inlet for Rinse, main dilutor and valve block with 6 valves: it is an Abacus Junior Vet model):

Construction - left side (note connected IDE ribbon cable):

2.3.2. Abacus junior B

Front panel (note missing floppy and CD-ROM drives):

Rear panel (note Serial Port as the only interface):

Construction – front:

Construction - right side:

Construction – back (note valve block with 5 valves):

Construction - left side:

3. OPERATION OF THE FLUIDIC SYSTEM

This section describes the main fluidic steps of **Abacus junior / Abacus junior vet / Abacus junior B** measurement cycle. The instrument's Fluidic Schematics are shown in Section 2.2. of this manual. The following figures show total measurement flow diagram and detailed descriptions of processes for understanding the fluidic system work.

The following steps are introduced in this section:

- 1. Flow diagram of measurement
- 2. Initialization process
- 3. Sampling process
- 4. Needle washing process
- 5. Diluting process
- 6. Lysing process
- 7. Counting process
- 8. Chamber draining process
- 9. Cleaning process
- 10. Shutdown process

In the detailed process description figures, the active tube is filled with black color, while an arrow (\rightarrow) shows the direction of the flow. Moving mechanic parts have another arrow indicating direction of movement. Only opened (On) valves are mentioned in this section while all the other valves are closed (Off).

Abacus junior / Abacus junior vet / Abacus junior B employs a software waste full checking feature. Software integrates volume of the reagents used, and gives a message when this volume reaches the preset tank capacity.

3.1. Flow diagram of measurement

3.2. Initialization of the Fluidic System

Fluidic initialization process performs the following steps:

- Checking of valves by turning all on/off
- Checking of pump and pressure sensor by generating measuring vacuum
- Positioning all mechanical components by scanning moving range (with endswitches)
- Priming of reagents and calibrating reagent sensors
- Cleaning of tubing & measuring chamber
- Cleaning of aperture with high-pressure back-flush, cleaner reagent & high-voltage burning

3.3. Sampling process

The aspirating needle aspirates 25 μ l (50 μ l in prediluted mode) of blood sample. The Microdilutor syringe makes the aspirating while the M4 Micro-dilutor motor moves down.

There is also another sampling process for the second (RBC) dilution, 25 μ I of primary dilution is aspirated by the sampling needle from the chamber but it is kept in the sampling needle during the WBC measurement and the cleaning process.

3.4. Needle washing process

Both instruments clean the sampling needle with diluent in the washing head after sampling. It is important to clean the outer surface of the sampling needle to avoid inaccurate sampling.

The Macro syringe doses and the pump drains the diluent from the washing head, while the sampling needle moves upwards so that the total length of it is washed and cleaned. This process is called total sampling needle washing, and it is mainly used after taking primary sample from sample tube.

Another process, which is washing only a smaller part of the sampling needle, is the same but the needle does not move in the total length. Some procedures perform this kind of sampling needle washing.

The Macro syringe pushes the diluent through V8 (Off), V7 (Off), V6 (On). The Pump aspirates the diluent from the washing head through V5 (On), while the M2 Vertical motor moves the sampling needle up.

3.5. Diluting process

The parts of the fluidics are rinsed with diluent reagent. The measuring chamber is filled up with 1 ml of diluent. This method prevents the chamber from dirt and makes the diluting process faster.

The sampling process has aspirated 25 μ I of sample, which is in the sampling needle. In the first diluting step the sample is dispensed into the measuring chamber with 3 ml of diluent, which comes from the Macro syringe through V8 (On) and Micro-dilutor, while the M3 Dilutor motor moves upwards. This process makes the 1:160 first dilution rate in the chamber.

The second sample $-25 \ \mu$ l of primary dilution - is stored in the sampling needle during the WBC measurement and the cleaning process. The instrument makes the second (RBC) dilution into the chamber after these processes.

3.6. Lysing process

In this step the set lysing reagent is added into the measuring chamber through V9 (On), while the Lyse syringe moves upwards. This process makes the WBC/HGB dilution with lyse reagent.

For better mixing the macro syringe pushes some air bubbles (aspirated through the washing inlet of the chamber and V3) after the lysing process through V8 (Off), V7 (On), V4 (Off) V3 (On).

3.7. Counting process

The regulated vacuum (it is generated by the pump in the puffer reservoir) aspirates the diluted sample (WBC or RBC) from the chamber through V2 (On) valve. There is no volume limiter in the system, the instrument counts the cells for 8 seconds in both counting phases (WBC and RBC).

For noise prevention there is no mechanical or electronic activity during the counting process and the door should be closed for better shielding.

3.8. Chamber draining process

Chamber draining is made under pressure control. Pump drains chamber while puffer reservoir and thus the pressure sensor is connected to the draining tube. The instrument can detect the empty state of the chamber from drop of vacuum.

3.9. Cleaning process

The pump aspirates the cleaner through the V5 (On), V2 (On), V4 (On) and V10 (On) valves to puffer the cleaner reagent in the tubes between V7 and V4.

After that the Macro syringe pushes the cleaner reagent remaining in the tube between V10 and V4 into the chamber. The liquid detector (Diluent & Cleaner detector) can detect the existence of cleaner solution.

3.10. Shutdown process

The fluidic shutdown performs the following steps:

- Priming chamber with reagent to avoid drying out of aperture
- Sampling needle is positioned above counting chamber, needle up
- Lyse and Rinse syringes are positioned up
- Diluent syringes are positioned down
- Sample rotor moved out

4. ADJUSTMENT

Mechanical and hardware adjustments are described in this section. Software settings are included in Section 5.2.

4.1. Mechanical settings

There are two important mechanical settings in the system:

- Opto wheel setting (Vertical motor)
- Sampling needle setting

The manufacturer adjusts the analyzer during production. However, in case of repairs in the mechanical system, these adjustments should be checked. The omission of these settings can cause malfunction or damages to the instrument.

4.1.1. Opto wheel setting

This setting is necessary for the vertical motor movements because this adjustment sets the opto end-switches of the H&V moving unit. The top of this block is called HV head and it is shown in the figure below.

Set the distance to **1-2 mm** between the moving carriage and the stable part of the head.

Loose "A" screws to allow free movement of the timing belt.

Adjust the opto wheel to home position, i.e. home hole must be in home sensor, and LED corresponding to home opto sensor goes on.

Fasten "A" screws.

Check the end position as well: move the needle down. Adjustment is successful if end LED goes on before moving part reaches end of mechanical range.

Once this adjustment is necessary, never miss sampling needle setting described in the next section.

4.1.2. Sampling needle setting

This adjustment sets the sampling needle to the operational position.

In Service menu, in Miscellaneous submenu of AJ/AJvet and in Service menu of AJB select *Needle setting*.

The software moves the needle back and up, and turns on horizontal and vertical motors (AJ/AJvet) to keep needle in place. AJB holds only the vertical motor during needle setting.

Check the setting of the needle. If end of the needle is at the bottom of the washing head, needle is set correctly. If not, open screws "B" (see above), and adjust the needle to the bottom of the washing head. Fasten "B" screws.

Set the end of the tip to the washing head's bottom plane, while the carriage is held by motors. (Needle setting menu). Fix the "B" screws.

Be careful with the bent upper end of the sampling needle, because if badly aligned, during movement it can hit other mechanical components causing mechanical jam, and therefore damages or error.

4.2. Hardware settings

4.2.1. Amplifier offset setting

Amplifier offset should be between ± 5 mV. Run self test to determine whether offset is within this range. If it is out of range, it should be re-set, by the following way.

- 1. Locate the opening for offset setting potentiometer on the measuring block (see enclosed picture).
- 2. In Service menu select Offset adjustment menu.
- 3. Adjust the potentiometer to reach 0 mV.

Opening for offset adjustment on measuring block

5. CHECKING THE PROPER OPERATION

There is a built-in Self test and Service menu in each models.

5.1. Self test of Abacus junior and Vet

5.1.1. Self test Screens (AJ/AJvet)

07.03.2003		
Abacus Junior		
1541		
AJV V1.0		
21.03.2003		
version		
MPU Firmware version:		3.0
		ן כ
	07.03.2003 Abacus Junior 1541 AJV V1.0 21.03.2003 version sion:	07.03.2003 Abacus Junior 1541 AJV V1.0 21.03.2003 version sion:

Self test can be used to check the operation of the instrument.

The first panel shows general information about the instrument. (See menu on the left.)

With the new COMB card, the PCPNIF firmware version is empty, and the MPU firmware version holds the COMB version number.

Self test results			
HGB light	17723		OK
Electr. Voltage:	51.2	V	OK
current:	879	uA	OK
offset	-1.9	mV	OK
Ampl. test:	20000	pls	OK
peak:	1641	mV	OK
dev:	53	mV	OK
Noise test:	1	pls/5 sec	OK

Self test results Atm 978 mBar OK Vacuum: 218 mBar OK 3 mBar/10sec OK drift: Power +12V: 11.2 V OK Power –12V: -11.5 V OK Power Batt: 3.2 V OK 44.8 °C Core Temp: OK Overall result: Successful ~ The second and third panel contains tested parameters, as follow:

HGB light (LED is on).

Measuring Electrode voltage, current and offset.

Amplifier transfer by generating 20000 **test** pulses, incl. gain related **peak** value, noise related **dev**iation.

Amplifier **Noise test** during a 5-second period.

Atmospheric pressure stands for outer pressure.

Vacuum reports pump operation (vacuum made by the pump in a 10-second period of time).

Drift represents pressure loss of vacuum measured in a 10-second period of time.

Power ±12V shows the amplifier voltage value.

Power Batt reports the voltage value of the battery. If battery fails, system time will stop.

Core Temp shows CPU temperature of the Control and Measurement Board (COMB).

Overall test result is displayed, which can be *Successful* (in case of every test result is *OK*) or *Errors* (if *HIGH, LOW* or *ERROR*).

At the end of a **result line status message** is displayed, which means that the actual test result is at the normal range (*OK*), higher (*HIGH*), lower (*LOW*) than the pre-determined limits, or the result is an error (*ERROR*).

Parameter	Unit	Lower bound	Upper bound
HGB light	count	3000	50000
Electrode voltage	V	45	55
Current	μA	830	930
Offset	mV	-5.0	5.0
Amplifier test	count	19990	20050
Peak of test pulses	mV	1300	1700
deviation (noise)	mV	0	100
Noise test	pls/5sec	0	50
Outer pressure	mBar	600	1100
Vacuum	mBar	125	250
Drift	mBar/10sec	0	10
Power +12V	V	11.0	12.5
Power –12V	V	-12.5	-11.0
Power Batt.	V	3.0	4.5
Core Temp.	°C	-	-

5.1.2. Normal range of Self Test parameters (AJ/AJvet)

5.1.3. Troubleshooting Guide for Self test

Parameter	Mark	Possible reason	Remedy
HGB dark	HIGH	Instrument door open	Close instrument door
HGB light	LOW	HGB head not connected or HGB LED out of order	Check HGB head connections check HGB LED during measurement
	HIGH	Instrument door open or HGB LED too bright	Close door or replace HGB LED resistor on amplifier board
Electrode voltage	LOW or HIGH	Fault on High Voltage or Amplifier board	Check measuring voltage (50V) on High voltage and Amplifier boards
Current	LOW or HIGH	Fault on Amplifier board	Check current generator, and test generator FET on Amplifier board
Offset	LOW or HIGH	Fault on Amplifier board	Check the offset potentiometer on Amplifier board
Amplifier test	LOW	Amplifier Boards is not connected to main board	Check cables and connectors coming from the Amplifier
	HIGH	Instrument not grounded	Check mains ground lead
Peak of pulses	LOW or HIGH	Fault on Amplifier board	Check current generator, and test generator FET on Amplifier board
Dev. (noise)	HIGH	Instrument not grounded	Check mains ground lead
Noise	HIGH	Instrument not grounded	Check mains ground lead
Outer pressure	LOW or HIGH	Pressure sensor, cable or connector problem	Check pressure sensor, cable connections and controller board pressure connector
Vacuum	LOW	Peristaltic pump failure	Check peristaltic pump
Drift	HIGH	Leakage in pneumatics	Check tubing in pneumatics

5.2. Self Test of Abacus Junior B

There is a built-in Self test and Service menu in Abacus junior B.

5.2.1. Self Test Menu

Press ' \downarrow ' to browse amongst listed parameters.

You can also print Statistics list:

DIATRON Abacus Junior B - Statistics -
S/N: 140001 SW: 1.56/1.0
SWDate: Jun 3 2004
Statistics
DB capacity: 40/100 Samples run: 31 Pneumatical Errors
Clogging:0Sensor:0Vacuum:0Mdilu:0MMicro:0Mlyse:0MRotor:1MHori:0MVert:0

SelfTest

If you press '**TEST**', a self-test is going to perform.

After the pneumatical initialization (if required) several test is made by the system. The results will come out from the internal printer.

SelfTest	SUCCES	ss ↓
AtmPres:	977	OK
MeaPres:	387	OK
Drift :	2	OK

Self Test result screen.

Press ' \downarrow ' to browse amongst listed parameters.

Self test results and their meanings:

DIATRON Z	Abacus J elf test	unior 	В	Title
S/N: 1400	001 SW:	1.56/2	1.0	Instruments serial number, Software version
Date	04.06.	2004.		Date of testing
SWDate:Ju	un 3 20	04		Software compilation date
AtmPres:	979	mBar	OK	AtmPres: stands for Atmospheric or ambient pressure.
MeaPres: Drift :	398 1	mBar mBar	OK OK	pump operation. (Vacuum made by the pump in a 10- second period of time)
HGB :	7587	pls	OK	Drift : represents pressure loss of vacuum measured in a 10-second period of time.
TestPLS:	9998	pls	OK	HGB: for testing the HGB measurement.
TestA/D:	10000	pls	OK.	To stDL Community of electronic disections in the
TestAMP:	1426	mV	0K.	10000 energy and the the relevant of the
TestDEV:	80	mV	OK	10000 ones created by the microcontroller.
NoiseLO:	0	pls	OK	TestA/D : number of digitalized pulses from the 10000
NoiseHI:	0	pls	OK	pulses mentioned before.
MeasCur:	868	uA	OK	TestAMP: peak voltage of test pulses.
MeasVlt:	50	V	OK	TestDEV: deviation of the received and digitalized test
MeasOfs:	0	mV	OK	pulses.
Overall:	SUC	CESS	~~~	NoiseLO: number of pulses falls below the low pulse threshold.

NoiseHi: number of pulses falls beyond the high pulse threshold.

MeasCur: measuring current that is measured under the self test process.

MeasVIt: measuring voltage: refers to the electrode voltage under measurement.

MeasOffs: refers to electrode offset.

Overall test result displayed, which can be **SUCCESS** (in case of every test result is OK) or **FAILED** (If any of the result is Hi or Lo).

At the end of every result line a status message is displayed, which means that the actual test result is at the normal range(OK), higher(Hi) or Lower(Lo) than the pre-determined limits listed below.

Parameter	Unit	Lower bound	Upper bound
Outer pressure	mBar	600	1050
Vacuum	mBar	200	450
Drift	mBar(/10sec)	-5	10
HGB light	pulse	3000	25000
Amplifier test	pulse	8000	10000
TEST A/D	pulse	8000	10000
deviation (noise)	mV	0	120
Amp pulse peak	mV	1300	1600
NOISELo	pulse	0	90
NOISEHI	pulse	0	90
Current	μA	800	950
Electrode voltage	V	45	55
Offset	mV	-10	10

5.2.2. Normal range of Self Test parameters (AJB)

5.3. Service Menu - AJ/AJvet

5.3.1. Entering to Service Menu

There is a Service menu for servicing and operation checking purposes. The entry point is in the User's Service screen, where Service Information is displayed.

Enter the code to access Service menu: 6484

5.3.2. Main Service Menu

The Main Service menu provides access to submenus and service utilities.

5.3.3. Edit service contact

Here you can edit the Information card fields by cursor keys, or by an external keyboard.

Press the OK button, if a field is completed.

This information will appear in the User Service menu.

5.3.4. Device Information

Device inform	ation	
Model: Serial No: Version:	Abacus Junior 1359 1.74	
Compiled:	21.12.2003.	

In the Device Information menu the model name, the serial number, the software version and compilation date appear.

5.3.5. Service Calibration

The analyzer provides a menu for Service calibration purposes.

In result calculations the service calibration factors are used as the user calibration factors, so they are multiplied for each parameter: **RBC**_{Disp.} = **Fact**_{RBC User} * **Fact**_{RBC Serv.} * **RBC**_{Measured}

If the user factor is near the bound (0.80 - 1.20), by setting the corresponding service factor, the user factor can be adjusted to 1.00.

Example: Fact $_{RBC User} = 1.19$ and Fact $_{RBC Serv} = 0.96$, and Fact $_{RBC User} = 1.00$ and Fact $_{RBC Serv} = 1.14$ gives the same result for RBC.

Apply user calibration **factors** function is used to combine user and service calibration factors. The software will multiply the existing factors, and move them to the Service level to set user factors to 1.00.

5.3.6. Software Settings

Service Person can set the parameters of the automatic functions in this dialog menu.

Settings	
Autoclean cycle (050):	20
Standby time (1060 min):	15
Reblank time (08 hours):	1
Rinse Time (03 hours):	1
Serial I/O speed (Baud)	Offline
Serial Protocol Version	2.20
	\mathbf{X}

Autoclean cycle: after how many measurements the instrument makes an autocleaning

Standby time: after how many minutes the instrument goes to standby mode (default = 15 min).

Reblank time: after how many minutes the instrument makes a blank measurement if it was in standby mode (default = 1 hour). If it is set to 0, then no ReBlank is performed.

Rinse time: If this time is set, then the instrument will make an automatic, extended washing procedure (with more diluent) of the chamber(s) to get wash dirt out of the chambers (dust). If it is set to 0, then no Rinse is performed.

Serial I/O speed: instrument can send results to a host computer via serial port with the RS 232 V24 protocol. The baud rate of this serial communication must be selected at this point. For details of the serial communication protocol, see Appendix 9.2 in this manual.

Serial Protocol Version: with this option, the used protocol (sending specific fields of data) can be selected. This is useful when you upgrade the analyzer with new software, but the laboratory system is compatible with an earlier serial protocol. Just select the previous protocol number from the list.

Settings	
Laboratory header lines	2
Waste container capacity (160 I)	20
Disable multiuser mode:	No
Disable 3 part diff:	No
Disable markers	No
Stretch histograms	No

Laboratory header lines: you can choose how many lines to contain the header of the blood result.

Waste container capacity: it essential to set the correct volume of the waste container for proper usage of the software "waste full" alert. Set this value two liters less than the total volume of waste container.

Disable multi-user mode: by this setting the multi-user mode can be disabled

Disable 3-part diff.: for using quick lyse (without 3-part differential) the errors and the bad 3-part parameters can be excluded from the results

Disable markers: setting this option to Yes will omit the vertical markers from printed reports

Stretch histogram: setting this option to Yes will modify the WBC histogram range from 0-300 fl instead of 0-400 fl (this is recommended for Veterinary mode)

Settings	
Language	English
Native keyboard	No
Maintenance day	Thursday
Patient data	Birthdate
Reagent code:	9
Extended probe voltages	Yes
	XV

Language: this setting will adjust the user language. The Service menu always uses English language.

Available languages: Chinese, English, French, German, Greek, Indonesian, Italian, Persian, Polish, Portuguese, Romanian, Russian, Spanish, Turkish, and Vietnamese.

Native keyboard: Setting it to Yes will utilize the external PC keyboard with the language specific layout.

Maintenance day: You can select from week days. According to this setting, the instrument will ask the user to do weekly maintenance during shut down.

Patient data: There are two options: Birthdate and Age. According to this setting, both in the sample information dialog and in the database, the instrument will prompt for the age or the date of birth. If age is specified, it can be given in years or months.

Reagent code: This code can be used to modify the offset of the HGB function. Enter a value between 0 and 30 (default is 9).

Extend Probe Voltages: This option is ON by default. It makes the instrument accept the physically highest probe voltages to allow operation at lower operating temperature range.

Calendar mode: You can select between the Gregorian and the Jalaali (Persian) calendar. All dates will be converted accordingly.

LCD light off delay: LCD backlight switches off after 4 hours, by pressing key switches back. Still the light is off, the LED is flashing yellow.

Instrument startup procedure: You can select to start the instrument with Database screen (without any pneumatic initialization) or with Measurement screen (with pneumatic initialization).

5.3.7. Service Testing Menu

Service Testing menu provides tools for checking hardware.

 Testing

 1. Self test

 2. Valve test

 3. Display test

 4. Stress

 5. Cleaning (5 cycles)

From this submenu the Service Person can directly run the built-in **Self test** (see 5.1).

5.3.8. Valve Test Menu

Valve test
01 02 03 04 05 06 07 08 09 10 11 P
0 0 0 0 0 0 0 0 0 0 0 0 0 0

Select valve: <LEFT> <RIGHT> Set valve on: <UP> off: <DOWN> Toggle valve: <OK> 929,5 mBar In the menu on the left you can see the valve numbers and a number under each that represents the actual state of the valve. **P means peristaltic pump**. Selected valve number is shown in inverse. 0 is

Off state, 1 is **On** state.

Use cursor keys for selecting and setting valve state, or press OK to toggle state.

5.3.9. Display and Keyboard Test

Display and keyboard test is provided to check keypad and LCD panel.

Press a key to test and the LCD will show the code of the pressed key, and will be invert the colors at each touch of a key for testing that every LCD dot is functioning.

5.3.10. Stress Mode

In **Stress mode**, the instrument performs measuring cycles without sample (blank measurements) continuously. This can be used for burn-in tests, or to check pneumatic system after changing any main fluidic parts.

You can have information about stability, cleanliness, HGB operation, and counting time stability. Results of the last 10 PLT and HGB blank is displayed as well.

You can detect any kind of noise, or bubbles in the system if the PLT is not stable low, or HGB has big variation. To exit from this mode **press the START button** (at the end of a normal cycle) until the Stress operation is finished.

5.3.11. Miscellaneous Settings

Miscalleneous	
1. Software upgrade	
2. Clear device statisctics	
3. Clear database	
 Offset adjustment 	
5. Needle setting	
Log in as supervisor	
	⊡ ►

In this menu, you can directly perform **Software upgrade** (this will restart the instrument).

Clear Device Statistics: Device statistics (number of measurements, aperture-clogging and other errors) can be cleared.

Clear Database: The whole Database (measurement results including histograms) can be cleared.

Offset adjustment: You can adjust the offset on the amplifier board.

Needle setting: By entering this menu the needle will go to the position you can adjust it.

You can **Log in as supervisor** if the Multi-user mode was selected in the User's Settings submenu. (Number 4 if present, shows the availability of this function.)

In supervisor mode, you have the ability to change any user passwords and you have full access over user settings. Always log out after this supervisor log in.

5.3.12. Multi-user Rescue Code

It the supervisor password has been forgotten, there is a rescue code for service purposes to access the supervisor level. The Service user data are as follows:

User ID: 0 (zero), Name: Service, Password: 729456 (This forms a capital "A" on the keypad)

5.4. Service Menu (AJB)

Service menu is provided for servicing and checking proper operation. The entry point is the Utilities menu.

Enter the code to access Service menu: 6484

5.4.1. MAIN Service Menu

Servic	e Menu		The main Service Menu provides access to submenus and service utilities.
MAINT	CAL	CLR	In this Menu you can reach MAINT ainance, CAL ibration or CL ea R menu.

With the CLEAR option, you can erase all the data in the pneumatic error statistics (what you can reach in Utilities\Diagnostics\STAT).

Serv.	Adjustments	MAINTENANCE Menu
OFFS	NDLE STRSS TEST	In this menu you can access OFFSET setting, NEEDLE setting, STRESS , Valve and Motor tests under TEST submenu.

OFFSET:	3mV

OFFSET setting screen

You can set the offset to zero with the potentiometer of amplifier board, while then actual offset is displayed.

SET	THE NEEDLE AND
	PRESS OK TO
	CONTINUE!
OK	CODE: 13

NEEDLE Setting screen

By pressing '**NDLE**' function button, instrument moves the needle to a safe location where you can check and set the needle into the proper position.

(Code: 13 is an internal code, representing this Needle setting process)

STRESS Menu				
10	20	50	100	

STRESS Menu

Select the number of Blank measurement cycles to run, by pressing the corresponding function button: '10', '20', '50' or '100'.

STRESS		1/26	STOP	່ິ
	MIN	MAX	ACT	lп
Р	0/	0/	0	l in
н	0/	0/	0	Va

STRESS screen

During Stress PLT and HGB blank results are displayed, in the following order **MIN**imum, **MAX**imum and **ACT**ual value. You can monitor stability, and cleanliness.

The first line indicates number of stress cycles/all cycles run.

Va	alt	7e	Te	est	2			E	KIT	
1	2	3	4	5	6	7	8	9	10	
х			\mathbf{x}							
Pι	Pump:ON			8	375	5mI	Bar			

VALVE TEST screen

Press numeric buttons '1' to '9' to turn on/off corresponding valve. Use '0' for valve10 and '.' for pump.

Active state is indicated by 'x' under each valve number. Pressure of vacuum chamber is indicated as well.

Motor Test	1 All
2 Dilu	5 Rotor
3 Lyse	6 Hori
4 Micro	7 Vert x

MOTOR TEST screen

Press a number button from '1' to '7' to make the corresponding motor move. Pressing '1' pneumatic initialization will run. Moving motor is marked by 'x'.

5.4.2. Service Calibration of Abacus Junior B

The analyzer provides a menu for Service Calibration purposes.

In result calculations the service calibration factors are used as the user calibration factors, so they are multiplied for each parameter: **RBC**_{Disp.} = **Fact**_{RBC User} * **Fact**_{RBC Serv.} * **RBC**_{Measured}

If the user factor is near the bound (0.80 - 1.20), by setting the corresponding service factor, the user factor can be adjusted to 1.00.

Example: Fact $_{RBC User} = 1.19$ and Fact $_{RBC Serv} = 0.96$, and Fact $_{RBC User} = 1.00$ and Fact $_{RBC Serv} = 1.14$ gives the same result for RBC.

By pressing '**AUTO**' key, user and service calibration factors can be combined automatically. The software will multiply the existing factors, and move them to the Service level to set user factors to 1.00.

If all service factors were 1.00, after this function all service factors hold the previous user factors, and all user factors become 1.00.

Calibr. Service	\leftarrow
> WBC = 1.00	<
RBC = 1.02	
AUTO EDIT ACP	т

Calibr.	Service	09	F
> WBC =	1.00	<	i
RBC =	1.00		-
EDIT	2	ACPT	l r

In CALIB screen you can review/modify actual Service Calibration Factors, in the following order: WBC, RBC, HGB, MCV, RDWc, PLT, MPV, PDWc.

Press **EDIT** to modify a factor. 0..9 in the upper right corner indicates you can use the number buttons on the keypad.

To stop editing a calibration factor press **OK**. To accept new calibration factors press **ACPT** button.

SERVICE OPERATION 6.

6.1. Opening the instrument

On the right side and the rear side of both instruments there is a side door, which allows reaching of the fluidic system and the mechanical parts. Other parts of the analyzer (electronic parts, etc.) can be reached by opening the front and rear covers.

How to take off the rear cover:

First unscrew the 5 cover fixing screws located on the rear panel, 2 screws on the upper side and 3 screws on the vertical side. After this, pull the cover backwards a few centimeters to release sliding locks, and then you can turn it upwards to take it off completely. In this way you will be able to reach the electronics: COMB and PPB (AJ/AJvet), or MAIN board (AJB). In AJ/AJvet, do not forget that you can take them off only if you take off IDEPROM Card first.

How to take off the **front cover**:

First unscrew the 2 screws located on right and left part of the upper side and the 3 screws located on the bottom side. After this, pull the cover towards you to take it off.

6.2. MDA (Monochrome Display Adapter) emulation mode – AJ/AJvet

MDA emulation mode was developed to help the manufacturer and Service Personnel in the checking phase of the instruments. This mode is available during the total operation but especially useful for checking the BIOS setup and OS functions. This mode should be handled the same as the service menu, the user does not have to know these options.

At power-on, the controller PIC display module displays the greeting screen. After 6 seconds, it starts to scan the keypad and behaves like an MDA adapter to the PC, although the displayed screen is still holding the greeting screen.

If you switch to **MDA emulation mode**, the system boot events can be displayed, and the CMOS SETUP program can be started, if necessary.

If the main program will not start in 90 seconds, the PIC will automatically switch to MDA displaying mode to give information about the reason of hang-up. This can be some CMOS failure, if the motherboard settings are lost for some reason, and the system is waiting for user confirmation: F1 on external keyboard, or running setup - both require external keyboard to be connected.

Hold the "i" button, and press and release the "." button on the foil keyboard of the analyzer to activate the MDA mode, which uses the LCD like a primary computer monitor (80 characters by 25 rows). The LCD is smaller than the standard monitor area therefore just about a guarter of the total screen is displayed (40 characters by 16 rows).

Quarter 1 on LCD	Quarter 2 on LCD	 to change the actual quarter displayed, use the arrows (cursor keys) on the keypad,
		 to find the cursor, press the "i" button,
		 to go back to the normal graphic displaying mode press "i ." again.
Quarter 3 on LCD	Quarter 4 on LCD	Definition of displayed LCD quarters in MDA emulation mode

6.3. Key BIOS settings for correct operation – AJ/AJvet

The required settings are enclosed in this section.

(In MDA mode, continuous changing of screen may appear. To avoid this, press left and up arrow on the keypad in any order.)

•	MAIN:		
_	Legacy Diskette A:	1.44/1	.25 MB
_	Primary Master:	SanDi	sk SDTE-XX
•	ADVANCED:		
	– PNP OS Installed:	No	
	 Reset Configuration Data: 	No	
	 I/O device configuratio 	n:	
	 Local Bus IDE Adapt 	er:	Enabled ; [in case of CD-ROM]
	 Floppy disk controller 	r:	Enabled ; [in case of Floppy drive]
	Base I/O addres	s:	Primary
	 Serial Port A: 		Enabled
	Base I/O address	s:	3F8
	Interrupt:		IRQ4
	 Serial Port B: 		Enabled
	Base I/O address	s:	2F8
	Interrupt:		IRQ3
	 Parallel Port: 		Enabled
	Mode:		EPP
	Base I/O address	S:	378
	Interrupt:		IRQ7
	 Watchdog Setting 	gs	
	Mode:		Disabled
	I/O Chip Select:		
	I/O Base:		Disabled
	– Halt on Errors:		No
•	SECURITY:		
-	Fixed disk boot sector:	Norma	al
-	Virus check reminder:	Disabl	ed
-	System backup reminder:	Disabl	ed
•	Воот:		
-	Quick Boot mode:	Enable	ed
	Boot Device Priority:		
	 CD-ROM Drive 		
	 Hard Drive 		
	DV-XX (Slave	device)	
	SanDisk SDTE	E-XX	
	Bootable Add-	In Card	S
	– Removable Devices		
	Legacy Floppy	/ Drives	

Network Boot

6.4. Checking the BIOS setup – AJ/AJvet

It is suggested to check it if the instrument hangs after switching on, or software does not start (or cannot be upgraded from floppy disk).

- Connect an external keyboard (US layout) to the instrument and switch it on
- Press F2 repeatedly until the instrument beeps.
- Switch the instrument to MDA emulation mode (by pressing "i." on the keypad)
- Check the key points listed above (or from the enclosed Main Board Manual), if you find differences, set these settings
- Go to the *Exit* menu (upper right quarter of the display) and select *Exit Saving Changes*. Confirm this by selecting *Yes* in the pop up window.
- The instrument will restart with the new (correct) BIOS setup configurations

6.5. BIOS-Description – AJ/AJvet

The **DIMM-PC/520-I** is equipped with a JUMPtec Embedded BIOS, which is located in a Flash EPROM onboard. This device has an 8bit wide access. Faster access is provided by the shadow RAM feature (default). For a detailed description of the BIOS Setup, please refer to the section below.

The Setup Guide

With the PhoenixBIOS Setup program, it is possible to modify BIOS settings and control the special features of the computer. The setup program uses a number of menus for making changes and turning the special features on or off.

General Information

To start the PhoenixBIOS setup utility press <F2> during the string, Press <F2> to enter, setup is displayed during boot-up. The Main Menu will be displayed.

The Menu Bar

The Menu Bar at the top of the window lists all the different menus. Use the left/right arrows to make a selection.

The Legend Bar

Use the keys listed in the legend bar on the bottom to make your selection or exit the current menu. The list below describes the legend keys and their alternates:

Key Function

<f1> or <alt-h></alt-h></f1>	General help window
<esc></esc>	Exit this menu
¬ or ® Arrow key	Select a different menu
- or ⁻ Arrow key	Move cursor up and down
<tap> or <shift-tap></shift-tap></tap>	Cycle cursor up and down
<home> or <end></end></home>	Move cursor to top or bottom of current window
<pgup> or <pgdn></pgdn></pgup>	Move cursor to next or previous page
<f5> or <-></f5>	Select the previous value for the current field
<f6> or <+> or <space></space></f6>	Select the next value for the current field
<f9></f9>	Load default configuration values for this menu
<f10></f10>	Save and Exit
<enter></enter>	Execute command or select submenu
<alt-r></alt-r>	Refresh screen

To select an item, simply use the arrow key to move the cursor to the field you want. Then use the plus and minus keys to select a value for that field. The Save Value commands in the Exit Menu save the values currently displayed in all the menus.

To display a sub menu, use the arrow keys to move the cursor to the sub menu you want. Then press <Enter>. A pointer (4) marks all sub menus.

The Field Help Window

The help window on the right side of each menu displays the help text for the currently selected field. It is updates as the cursor is moved to each field.

The General Help Window

Pressing <F1> or <Alt-F1> on any menu brings up the General Help Window that describes the legend keys and their alternates. Press <Esc> to exit the General Help Window.

The Main Menu

You can make the following selections on the Main Menu itself. Use the sub menus for other selections.

6.6. DOS functions on the instrument – AJ/AJvet

To run the computer part of the instrument like a normal PC, the Service Personnel should have an **MS-DOS** 6.22 operating system **boot floppy** disk.

- Connect an external keyboard
- Put the MS-DOS boot floppy into the floppy disk drive
- After turning on, go to the BIOS setup (press F2 repeatedly on the keyboard and switch to MDA mode by pressing "i.").
- Change the *Boot Device Priority* in the *BOOT* menu: The *Removable Devices* must be the first in the list. Select *Removable Devices* and move it up by pressing "+" on the keyboard.
- Save the actual settings to CMOS, the instrument will restart (Exit Saving Changes)
- The instrument will boot from the floppy and the software will be terminated
- Switch to MDA mode by pressing "i."
- Do not forget to restart the instrument and set back **Boot Priority** list after servicing, (*Hard Drive* first)

6.7. Error messages – AJ/AJvet

The analyzer checks the operations of several mechanic, fluidic and electronic parts during measurement. The system shows the type of the error on the LCD display if any kind of malfunction is detected.

The electronic parts have a very little chance to fail, only the connections and cables could disconnect, which can cause the malfunction of the electronic system. The mechanic and fluidic system have a bit more chance to go wrong because it has moving parts.

In 6.7.1 section there is the total error code list.

6.7.1. Abacus Junior / Abacus Junior Vet error code list

%s: filename concerned	l, %d: error type con	cerned, %u: error specifi	c string
------------------------	-----------------------	---------------------------	----------

Code	Error text	Reason(s)	Remedy
1000	Out of memory in %s	Fatal system or program error!	Check the COMB card and Dimm-PC module for proper insertion.
			Try to make a software upgrade.
1001	Error %d on opening file %s	Fatal system or program error!	The same as in case of error code 1000.
1002	Cannot create file %s	Fatal system or program error!	The same as in case of error code 1000.
1003	Data file %s is corrupt, new will be created, all stored measure data will be lost	Stored data file is corrupt or missing! Disk or software error.	New stored data file will be created automatically (by a User confirmation).
1004	Error %d on indexing file %s	Fatal system or program error!	The same as in case of error code 1000.
1100	Pressure error.\n Power off the system	Cannot make the measuring vacuum!!	Check the pump and the tubes, fittings and valves around the puffer reservoir.
1101	Waste is full! Empty waste container! The system assumes that you will do it before going on!	Waste container is full!	Empty waste container! If it is not full, there is a clogging in the waste sensor line.
1102	Check Diluent container!	Diluent tank is empty, or the dil./clean sensor is too sensitive (try recalibrating the sensors), or there are lot of bubbles in the diluent tube	Replace the diluent reagent container with a filled one. If this is still a problem with a filled diluent container, run Reagent sensor calibration and check the tubing and fittings of diluent path.
1103	Check Lyse container!	Lyse tank is empty, or the lyse sensor is too sensitive (try recalibrating the sensors), or there are lot of bubbles in the lyse tube	Replace the lyse reagent container with a filled one. If this is still a problem with a filled lyse reagent container, run Reagent sensor calibration and check the tubing and fittings of lyse path.
1105	Vacuum error	The measuring vacuum has been dramatically decreasing during the measurement or absolutely lost!	Leakage in the pneumatic system (check the pump, fittings, tubing, pressure sensor, puffer reservoir and valves).
1106	Pneumatical error occurred! Device: %s Error code: %s Status: %x Retry?	Fatal error in mechanical subsystem.	If frequently happens this error check the proper operation of the motor modules (home/end opto switches, ribbon cables and moving of motors).

Code	Error text	Reason(s)	Remedy
1107	Check Cleaner container!	Cleaner tank is empty, or the dil./cleaner sensor is too sensitive (try recalibrating the sensors), or there are lot of bubbles in the cleaner tube	Replace the cleaner reagent container with a filled one. If this is still a problem with a filled cleaner container, run Reagent sensor calibration and check the tubing and fittings of cleaner path.
1110	Check Rinse container!	Rinse tank is empty, or the rinse sensor is too sensitive (try recalibrating the sensors), or there are lot of bubbles in the rinse tube	Replace the rinse reagent container with a filled one. If this is still a problem with a filled rinse container, run Reagent sensor calibration and check the tubing and fittings of rinse path.
1111	The sampler rotor was jammed during sampling process! Retry sampling?	Cap was not taken off from the sample tube, or tube is not placed correctly, or other mechanical jam	Check the adapter and the tube. Press Retry or Stop.
1112	The sampler rotor was jammed!	Mechanical problems like adapter is moved out from the right place	Check the adapter and the tube. Press the 🗹 button
1113	Unrecoverable pneumatical error occurred!\n Device: %s\n Error code: %s\n Status: %x\n Please turn off the instrument and turn it on again!	Fatal error in mechanical subsystem. Possibly mechanical jam.	Check the proper operation of the motor modules (home/end opto switches, ribbon cables and the motor moving).
1200	Fatal MeasInit error. Power off the system!	Fatal COMB error.	Replace the COMB board.
1201	Fatal HGB error. Power off the system!	HGB channel did not give a ready signal!	Replace the COMB board.
1300	Cannot write archive data! Check disk! It may be unformatted, full or bad! Do you want to retry?	Cannot write archive data because some disk errors!	Change the floppy disk.
1301	Cannot read archive data! Do you want to retry?	Archive disk is damaged or not an archive disk!	Change the floppy disk (archive).
1302	Cannot load archive data.	Disk is not an archive disk or damaged!	Change the floppy disk (archive).
1400	Printer error %d	Printer error!	Check the connections between instrument and printer and check printer setup in Printer Settings

Code	Error text	Reason(s)	Remedy
1401	Printer is out of paper and error %d	Printer is out of paper and there are some other printer errors!	Feed the printer with paper. Check the connections between the instrument and the printer and check the printer setup in the Settings/Printer settings sub- menu.
1402	Printer is out of paper	Printer is out of paper!	Feed the printer with paper.
1403	Printer was not set up correctly	The selected printer type does not match to the printer!	Modify the printer setup in the Settings/Printer settings sub- menu.
1404	Paper width is too large	Paper width overstep the margin.	Modify the paper setup in the Settings/Printer settings sub- menu.
1405	Paper height is too large	Paper height overstep the margin!	Modify the paper setup in the Settings/Printer settings sub- menu.
1406	Paper width is too small	Paper width overstep the margin!	Modify the paper setup in the Settings/Printer settings sub- menu.
1407	Paper height is too small	Paper height overstep the margin!	Modify the paper setup in the Settings/Printer settings sub- menu.
1408	Left margin is too large	Left margin is too large!	Modify the margin setup in the Settings/Printer settings sub- menu.
1409	Top margin is too large	Top margin is too large!	Modify the margin setup in the Settings/Printer settings sub- menu.
1410	Spacing is too large	The distance between two results is too high!	Modify the vertical spacing setup in the Settings/Printer settings submenu.
1411	Error #%d in printer initialization!	Printer software error!	Check the connections between the instrument and the printer and check the printer setup in the Settings/Printer settings sub- menu. Try to make a software upgrade.
1900	You have to add at least one user to use multi user mode!	Multi-user problem.	Follow the instruction, or change to single user mode in the User settings submenu.
1921	%s sensor calibration failed! The system turned off the %s sensor.	Reagent container became empty, or there are lot of bubbles in reagent tubes.	Replace the reagent container with a filled one. If this is still a problem with a filled reagent container, turn on the sensor and try recalibrating and check the tubings and the fittings.

Code	Message text		
5001	Remove reagent tubing at rear reagent inputs (Diluent, Lyse, and Cleaner).		
5002	Connect min. 100 ml distilled water to reagent inputs using cleaning tube kit.		
5003	Remove cleaning tube kit. Keep reagent inputs free.		
5004	You can power off the system!		
5005	Apertures are partially clogged. Try cleaning!		
5006	Please empty waste container!		
5100	%u data record(s) will be copied to the database.		
5101	%u data record(s) is selected.		
5102	Insert data disk!		
5103	Insert data disk #1 of 1!		
5104	xx data record(s) will be saved on 1 disk(s).		
	Insert an empty floppy disk!		
5105	Insert next empty floppy disk!		
5106	No such type of data		
5200	Your previous QC data will be lost.		
	Are you sure?		
5300	Some or all of the calibration factors are out of range!		
5400	+12V too low!		
5401	+12V too high!		
5402	Battery voltage too low!		
5900	This function is not available because there are no accepted blank values.		
	Try blank measurement!		
5901	Insert software update disk!		
	The system will restart.		
5902	Are you sure to delete all device statistics?		
5903	This function will delete all measured results.		
	Are you sure?		
5904 This function will delete all selected records.			
	Are you sure?		
5905	Are you sure?		
5906	You can power off the system now or restart it by pressing any key!		
5907	Now it is time to clean the washing head with a damp cloth, and check the pump cleanliness. Make sure they are all clean, then you can proceed.		
5908	Set the needle and press any key to continue!		

6.7.2. Abacus Junior / Abacus Junior Vet message code list

6.8. Warnings and Error Codes for Abacus Junior B

Code	Message	Remedy
10	REMOVE REAGENT TUBINGS! LEAVE WASTE CONNECTED!	Message during Preparing for shipment. Disconnect reagent tubes but Waste.
11	CONNECT DISTILLED WATER!	Message during Preparing for shipment. Connect distilled water to all inlets.
12	REMOVE DISTILLED WATER! LEAVE WASTE CONNECTED!	Message during Preparing for shipment. Disconnect reagent tubes but Waste.
13	SET THE NEEDLE AND PRESS OK TO CONTINUE!	Message during needle setting. Adjust needle to bottom of washing head.
80	Some factors are out of range	Use the Service calibration factors to extend user calibration range if needed.
81	No results found for selected operation	No CAL/QC type of measurement has been selected before trying to use them.
20	REMOVE ALL TUBINGS FROM INPUTS! LEAVE WASTE CONNECTED!	Message during Preparing for shipment. Disconnect reagent tubes but Waste.
21	CONNECT DISTILLED WATER!	Message during Preparing for shipment. Connect distilled water to all inlets.
22	CHECK DILUENT CONTAINER!	Check Diluent tank, probably it is empty.
23	CHECK CLEANER CONTAINER!	Check Cleaner tank, probably it is empty.
24	CHECK LYSE CONTAINER!	Check Lyse tank, probably it is empty.
25	SAMPLER ROTOR WAS JAMMED!!	Sample rotor blocked, check for reason.
26	SAMPLING ERROR!!	Needle is blocked while sampling. Check needle height setting for sample tube.
27	PNEUMATICAL ERROR OCCURED!	See below.
28	FATAL PNEUMATICAL ERROR OCCURED!	See below.
29	VACUUM ERROR!	Pressure drop in vacuum chamber is too high. Check for diluent reagent (maybe DIL sensor is off, while diluent tank is empty), fittings of tubing, and integrity of pump tube. Replace if necessary.
30	PRINTER ERROR!	There is no paper loaded in printer.

In case of Pneumatic errors (Code 27,28), you will see one of these screens:

Name corresponds to one of the motors detailed below.

Pneumatical		
error	occurred!	
	Name, number	
EXIT RETR	CODE:27	

FATAL	pneumatical	
error	occurred!	
EXIT	Name, number CODE:28	

Press '**RETRY**' to make initialization, and then retry the last action. Press '**EXIT**' to turn off machine.

Number	Name	Explanation
1	MHori	can't reach HOME opto (step error)
2	MVert	can't reach HOME opto (step error)
3	MRotor	can't reach HOME opto (step error)
4	MMicro	can't reach HOME opto (step error)
5	MDilu	can't reach HOME opto (step error)
6	MLyse	can't reach HOME opto (step error)
7	MHori	can't reach HOME opto (step error)
8	MHori	HOME-END distance too long/short
9	MVert	can't reach END opto (step error)
10	MVert	HOME-END distance too long/short (range error)
11	MMicro	can't reach HOME opto (step error)
12	MMicro	HOME-END distance too long/short (range error)
13	MRotor	turn-in error
14	MRotor	turn-out error
15	MDilu	can't reach END opto (step error)
16	MDilu	HOME-END distance too long/short (range error)
17	MLyse	can't reach END opto
18	MLyse	HOME-END distance too long/short (range error)
19	Vacuum	Can't create/sense vacuum
20	Vacuum	Can't execute vacuum controlled draining
21	Vacuum	Can't measure ambient pressure
22	Vacuum	Ambient pressure out of 600-1100 mBar region
23	Vacuum	Can't create vacuum to v. controlled draining
24	Sensor	Can't discriminate between empty and full state (Diluent)
25	MRotor	Can't turn out (or before can't turn in)
26	Sensor	Can't discriminate between empty and full state (Lyse)
27	MDilu	Opto found ! (range error)
28	MLyse	Opto found ! (range error)
29	MMicro	Opto found ! (range error)
30	MVert	Opto found ! (range error)
31	MHori, MVert, MLyse, MDilu, MMicro, MRotor	Can't reach opto (step error)

Step error: the motor moves to either of end switches. This should be done within a specified number of steps, but it failed, due to one of the reasons:

- Mechanics is jammed, so that movement is not possible
- The corresponding opto sensor is bad
- Connector of the erroneous motor is off.

Range error: the motor moves specified number of steps, and it should not have reached one of the end switches, but it did. Possible reasons:

- Mechanics is partly jammed, or blocked, so that the previous movement was shorter
- Connector of the erroneous motor is off.

Always check reagent tubing for blockage or clogging if MDilu or Mlyse range/step error.

Distance error: number of steps from home opto to end opto is too low.

6.9. Possible Causes of Noise

Generally high count of any particle - even if you think it should be low, or near zero - can be caused by NOISE, i.e. something interferes with measurement.

The most important thing in these cases to identify the source of NOISE, otherwise you cannot protect the system against it.

NOISE can come from has several sources, and the different NOISE sources are added.

Sometimes we have to fight one of them, but sometimes more. Only one of them is enough to make problem.

6.9.1. Contaminated reagent

The most probable cause: real particles are in the reagent, and therefore the PLT blank is continuously high (e.g. always 30-40). You can easily sort out this case by replacing diluent by opening a new tank. PLT blank must go down is several blank measurements (below 10).

How can a good reagent become bad by time?

- If the reagent tube was contaminated, and some bacteria begin to grow inside, once you
 put an infected reagent tube into a new tank, by time it can become infected as well, i.e.
 the background (PLT blank) becomes high. Wash the reagent tube which is in
 connection with the reagent with 1% of bleach solution, then rinse with clean distilled
 water or diluent. It can avoid the bacteria to grow inside.
- If tank is open and cap is not installed or closed external dust can make reagent dirty.

6.9.2. Bad earth grounding

In this case external - ground referenced - noise can get into the system by ground coupling. If system ground is not good enough, ground terminal can become a noise source as well, i.e. external signals will be coupled into the system instead of protecting it.

If no earth ground is available, you can use a screw at the rear panel to connect a ground potential to the case, so that noise immunity can be increased.

Measure voltage on ground terminal to make sure earth grounding is correct. AC voltage lower than 1V is accepted in this case.

At some places - as a bad practice - electricians like to connect earth ground terminal to neutral wire. Depending on the resistance of the neutral back wire (where it is really earthed), several volts can appear, and this way any inductive noise will be coupled into the instrument. It is better to create a real earth grounding and connecting it to the rear screw.

6.9.3. External electrical noise

If another instrument is near the analyzer can radiate electromagnetic signals in the 1 kHz - 100 kHz frequency region it can be picked up by the system (especially if they are very close to each other, or the grounding is not quite perfect).

You can easily identify this noise source: by relocating the instrument noise (high PLT blank) disappears. In this case you have to identify the possible noise source (switch mode power supplies, computer monitors, since they are not shielded, centrifuges due to high switching noise of rotor contacts, etc.), the power of the electromagnetic source, because if high power is present, maybe relocation does not solve your problems, sometimes the electric power supply makes the coupling, so UPS solves the problem.

Another source of coupling in external noise can be the reagent tanks and tubes. Especially radio transmitters can cause problems of radiating so that even the reagents (diluent) guides in the noise. A metal pack for the diluent tank, then a good earth grounding of this metal box allows this coupling to disappear forever.

6.9.4. Internal noise sources

The most annoying but real cause is some sort of internal noise. The reason for this phenomenon is that inside electrode - hot point - of the measuring circuit must be well insulated from surrounding electronics, otherwise inside noise sources can take their effect.

A. Bad chamber insulation:

- bad shielding of the chamber (floating shield couples signals to the chamber, and does not prevent against them). Check grounding of shield, remove it and clean the surface between the shield and the metal base.
- **bad reference electrode connection** (floating ground reference). Repair is required.
- **bad sealing of aperture**. Replacement of measuring tube is required.
- broken measuring chamber starts to conduct through the gaps (ground path). Replacement of chamber is required.
- contaminated draining tube starts to conduct due to protein or lipid build-up. It is very easy to identify this case. After replacing the drain tube of the measuring chamber (mainly WBC), WBC histogram peak, or PLT becomes low soon. Normally a good cleaner is required to dissolve lipid or protein build-up. Sometimes the cleaner is not strong enough to keep this tube clean enough. Periodic washing using 1% hand warm bleach solution helps.

B. Bad insulation of electronic signal paths:

In these cases check for any capacitive coupling of electronic signals to the chamber:

- interference with HGB head (high-frequency signal is coupled to the chamber). HGB head metal parts must be grounded. The ground comes externally, it must be in place, otherwise HGB head does not shield, but couples in noise.
- interference with internal high voltage inverter (high-frequency signal is coupled to the chamber). Repair is required: avoid near contact of HVB cable to chamber or shielded amplifier cable.
- interference with internal start button (polling signal to start button may cause noise).
 Guide start button wires as far from chamber as possible. You may try mix them up on the start micro-switch if applicable.
- interference with display cable (high-frequency LCD signal is coupled to the chamber by the ribbon cable). Keep the ribbon cable far from the chamber.
- interference with CPU fan or other digital logic traces (CPU fan or other digital signal radiates to chamber or to the shielded amplifier cable). Try keeping the ribbon cables far from the chamber and shielded cable.

C. Bad components, or connections:

- bad soldering, salt residuals or component failure on amplifier (especially if some reagent could get in the amplifier section). Cleaning of PCB/electrode socket or replacement of amplifier is required. Check for the correct soldering of reference cable and its connector.
- circuit board bad soldering or component failure. Check the shielded cable connections as well. Sometimes inside out connection (hot electrode goes outside as a shield) is the problem: both ends of amplifier signal cable must be reversed.
- analog signal ribbon cable (it picks up noise). Check the ribbon cable between the circuit board and the amplifier. Maybe it is pinched under some screws or components. This may cause trouble and even noise.

D. Pneumatic failures, liquid paths that conduct noise into the chamber:

- **liquid remains under the chamber in drain tube** (during measurement the conducting liquid remains inside the drain tube making noise to appear there).
 - Check chamber draining path for clogging or salt crystals.
 - Check the pump operation. Since draining of the chamber goes under pressure control, maybe a bad pressure sensor or connection can cause trouble.
 - Clean the draining path. Do not use alcohol, but bleach. Replace chamber if necessary.
- liquid remains in the washing inlet at top of the chamber (during measurement the conducting liquid remains inside the chamber wash tube making noise to appear). The software is not compatible with the mechanics, or related valve is bad/partly clogged, or the tubing is clogged/loose.
- lyse path guides in noise (during counting, if the a liquid in the draining tube is touching lyse reagent in T-fitting, noise can appear). Check the lyse path, and the lyse valve as well.

7. MAINTENANCE

7.1. Weekly Maintenance by User

User should carry out on the first workday, before starting up the analyzer.

7.1.1. Cleaning the washing head

User should clean the lower surface of the sampling needle washing head using a soft cloth, immersed in warm tap water to remove salt build-up.

7.2. Periodic Maintenance by Service

The instruments should be checked and maintenance must be carried out in every 6-12 months, or after 10 000 measurement cycles.

7.2.1. Check Self test and Device statistics

Run the built-in Self test and check the overall test result. Check the device statistics to find common problems.

7.2.2. Cleaning and Greasing Dilutor Block

The dilutor block driving wheels and gear bar should be cleaned from dirt and must be greased between the gear bar and the support, and between cogged wheels.

7.2.3. Checking and Lubricating Dilutor Piston Tips

The cogged end of PTFE dilutor pistons should be cleaned and lubricated by neutral silicon grease. Apply just a thin layer, and move it along the perimeter of the piston, so that some of the material goes into the gaps between the sealing rings.

Repeat this step for lyse and dilutor pistons as well. Check the condition of the micro piston sealing, and replace if necessary.

7.2.4. Cleaning and Lubricating Needle Moving Mechanics

The H&V moving mechanics sliding bars should be cleaned from dust. Lubricating of the sliding bars must be made using "**Photorube**" oil containing PTFE. **Grease or pure lubricating oil is not suitable.**

7.2.5. Checking and Replacing Washing Head

Check the state of the washing head, and replace if necessary. After replacing washing head, do not forget to perform correct adjustment of sampling needle height (see Section 4.1.2).

7.2.6. Checking and Replacing Peristaltic Pump Tube

Replace peristaltic pump tube if needed. You can check it by opening the lock, and removing the tube for inspection.

Check for leakage of the tubing. Reassemble the head.
Warning! Be careful, DO NOT twist the tube while reposition it into the head, because it will cause malfunction in a very short period of time.

7.2.7. Checking of the Power Supply

Open the instrument for regular cleaning inside. Check the cleanliness and operation of the cooling fan of the power supply. Clean or replace the fan if necessary.

7.2.8. Bleaching of Fluidic System

It is recommended to run a bleaching procedure to remove stains from the fluidic system.

- 1. Connect 2-5%, hand warm, clean bleach solution to all reagent inputs, and perform priming on all reagent inputs.
- 2. Leave it in the tubing for not more than 2-3 minutes.
- 3. Remove the bleach, prime on air.
- 4. Connect distilled water (100 ml), and perform priming all reagents, again. Connect reagents, and run priming again.

CODE	PART NAME	AJ	AJ-Vet	AJ-B
A133	HVB BOARD WITH INVERTER	х	x	
J134	HVB BOARD WITHOUT INVERTER			х
J135	LCD DISPLAY (Alpha-Numeric, 4x20 chars.)			х
A136	LCD DISPLAY (Graphics, 240x128 pixels)	х	x	
A137	LAMP FOR LCD	х	x	
A192	DIMMPC (CPU)	х	x	
A193	HEAT SINK FOR DIMMPC	х	x	
A302	STEPPER MOTOR	х	x	х
A304	TIMING PULLEY FOR X	х	x	х
A305	TIMING PULLEY FOR Y	х	x	х
A308	OPTO SWITCH I.	х	x	х
A309	OPTO SWITCH II.	х	x	х
A310	WASHING HEAD	х	x	х
A402	A402 SEALING RING FOR CHAMBERS		x	х
A403	A403 U-SHAPED METAL FIXING FOR APERTURE		x	х
A421	.421 APERTURE (80 μm)		x	х
A422	A422 GROUND ELECTRODE		x	х
A430	I30 MEASURING CHAMBER		x	х
A434	HGB MEAS HEAD (COMPLETE)		x	х
A504	4 2/2 VALVE		x	х
A505	3/2 VALVE	x	x	х
A506	VALVE COIL FOR BOTH VALVES	x	x	х
A507	2/2 VALVE HEAD	x	x	х
A508	3/2 VALVE HEAD	x	x	х
A509	VALVE MEMBRANE	x	x	х
A541	4/2 PLASTIC TUBE (SILICON)	х	x	х
A542	5/3 PLASTIC TUBE (SILICON)	x	x	х
A543	4/1.8 TYGON TUBE	x	x	х
A544	5/3 REAGENT TUBE	х	x	х
A545	3,2 mm T CONNECTOR	х	x	х
A546	Y CONNECTOR	x	x	х
A551	COLOUR LOCKING RING	x	x	х
A552	COLOUR LOCK NUT (INSIDE)	х	x	х

8. SPARE PARTS

CODE	PART NAME		AJ-Vet	AJ-B
A553	COLOUR CODING RING (OUTSIDE)		x	х
A554	LUER FEMALE	x	х	х
A555	LUER MALE	x	х	х
A556	2,3 mm T-CONNECTOR	x	х	х
A560	PERISTALTIC PUMP	x	х	х
A561	TUBE FOR PERISTALTIC PUMP	x	х	х
A563	CASSETTE FOR PUMP	x	х	х
A564	FIXING FOR PUMP (PAIR)	x	х	х
A565	CONNECTOR FOR PUMP (PAIR)	x	x	х
A640	INSTRUMENT FOOT	x	x	х
A701	MAINS CABLE (220V)	x	x	х
A702	MAINS CABLE (110V)	x	х	х
S800	THERMAL PRINTER (INTERNAL)	x	x	х
S801	MECHANICS FOR INTERNAL PRINTER	x	х	х
S802	ELECTRONICS FOR INTERNAL PRINTER	x	х	х
S803	CASE FOR INTERNAL PRINTER		х	х
C400	MEASURING BLOCK EXCLUDING AMPLIFIER		х	х
C510	PUFFER RESERVOIR	x	x	х
J100	POWER & PNEUMATIC BOARD (PPB)		x	
J110	CONTROL BOARD (COMB)		х	
J111	CONTROL BOARD (COMB) & DIMMPC		x	
J120	MAIN BOARD			х
J139	FOIL KEYBOARD (Junior B)			х
J132	FOIL KEYBOARD (Junior, Junior Vet)	x	х	
J138	DISPLAY BOARD	x	х	
J140	AMPLIFIER BOARD	x	x	х
J156	POWER SUPPLY	x	х	х
J157	MAINS SWITCH	x	х	х
J170	IDEPROM BOARD	х	x	
J214	DILUTOR BOARD	x	x	х
J224	MICRODILUTOR BOARD	x	x	х
J240	REAGENT SENSOR BOARD	х	х	х
J250	DILUTOR BLOCK COMPLETE (2 MOTORS)	x	х	х
J251	SYRINGE+PISTON (MOUNTED /2ML)	x	х	х
J252	PISTON LOCKING SCREW	х	x	Х

CODE	PART NAME	AJ	AJ-Vet	AJ-B
J300	XY MOVEMENT BLOCK	х	х	х
J301	TIMING BELT FOR X	х	х	х
J302	TIMING BELT FOR Y	х	х	х
J306	GEAR FOR Y OPTO	х	х	х
J307	H&V MOTOR OPTO BOARD	х	х	х
J311	SAMPLING NEEDLE	х	х	х
J501	VALVE UNIT I. (valve 1-5)	х	х	х
J502	VALVE UNIT II. (valve 11-15)	х		х
J503	VALVE UNIT II. (valve 11-16) (Junior VET)		х	
J530	PRESSURE SENSOR (COMPLETE)	х	х	х
J558	REAGENT TUBING SET (HUMAN)	х		х
J559	REAGENT TUBING SET (VET)		х	
J610	MICRO SWITCH	х	х	х
J613	LED BOARD		х	х
J721	AMPLIFIER BOARD CABLE		х	х
J750) CABLE SET (Junior, Junior Vet)		х	
J751	CABLE SET (Junior B)			х
J900	MICRODILUTOR UNIT	х	х	х
J901	MICRO PISTON	х	х	х
J902	MICRO SYRINGE COVER	х	х	х
J903	ADAPTOR I. for 1-0,3ml microtainers (Greiner, BD,) max. Ø11mm	х	x	х
J904	ADAPTOR II. for 3ml vacutainers max. Ø12,5mm, max. height 76mm	х	х	х
J905	ADAPTOR III. for R&D 2ml blood control	х	х	х
S210	BEARING FOR DILUTOR	х	х	х
S211	SEEGER RING	х	х	х

9. APPENDICES

9.1. Warning flags - AJ/AJvet only

Uppercase letters refer to WBC or HGB problems:

Flag	Meaning	Recommended user action
ш	No WBC 3-part differential	Possible lyse problem. May occur in pathological lymphocytosis.
H	HGB blank is high, or no HGB blank	Repeat blank measurement. If HGB blank is not stable, there are probably bubbles in the WBC chamber: Run a cleaning and try blank again. Close the side door if it was open during measurement.
В	WBC blank is high, or no WBC blank	Repeat blank measurement, or run prime lyse and try blank again. Possible lyse contamination, or noise problem.
C, Q	WBC clogging	Aperture clogging. Perform cleaning and repeat the measurement. If it is a general problem, please contact your Service Personnel.
		Low temperature reagents can cause it as well (mainly diluent), in this case you will have to wait until they reach room temperature.

Warning flags in lowercase refer to RBC or PLT problems:

Flag	Meaning	Recommended user action
р	PLT blank is high, or no	Run cleaning and repeat the blank measurement.
	PLT blank	Diluent or system cleanliness problem. If it is stable high, replace the diluent by opening a new tank.
b	RBC blank is high, or no RBC blank	Same action as in case of warning flag p .
С	RBC/PLT clogging	The same action as in case of the C warning flag.

9.2. Serial Communication Protocol

9.2.1. General Description

The analyzer is able to make serial connection link to a receiver device (e.g. computer) connected to the serial port. If Baud Rate setting in Service Menu is set to a valid value (other than Not Connected), the instrument will try to initiate a communication sequence.

Once the analyzer starts serial communication, the receiver should respond to it.

The hardware protocol: **8 data bit, 1 stop bit, no parity**. If the other side is not responding in 1 second, the instrument will repeat the transmission twice, but if there is still no response, the other side will be supposed to be not ready to receive data, and thus the analyzer will not try to communicate any more.

From this state it can wake up by receiving an <ENQ> (ASCII code 5) character from the other side, and the instrument will immediately respond an <ACK> (ASCII code 6). From this point the instrument will send data if it is ready for transmission.

The communication is based on packages.

There are 5 package types:

- INIT package: Device identification, software version, current date and time.
- DATA package: Sample and patient information, measured parameters, and markers.
- RBC package: Sample information, RBC histogram.
- WBC package: Sample information, WBC histogram.
- PLT package: Sample information, PLT histogram.

The communication sequence is always started with an INIT package. If the link is successful, the instrument will send DATA package, and the receiver can request RBC, WBC and PLT packages at acknowledge.

Special characters used in the communication:

Character	ASCII code
<soh></soh>	1
<stx></stx>	2
<etx></etx>	3
<eot></eot>	4
<enq></enq>	5
<ack></ack>	6
<ht></ht>	9
<lf></lf>	10
<nak></nak>	21
<space></space>	32

9.2.2. Format of Packages Sent

Packages sent by the analyzer are always between <SOH> and <EOT> characters, and they consist of header, data and tail. The header consists of a package identifier and a package type descriptor. The tail includes the checksum. Typical format:

<SOH>MID CMD<STX>MESSAGE<ETX>CHKSUM<EOT>

MID: Message ID, one capital letter between 'A' and 'Z'

CMD: Command, one capital letter, package type descriptor

- 'I' for INIT;
 - 'D' for DATA;
- 'R' for RBC;
- 'W' for WBC;
- 'P' for PLT.

MESSAGE: the message consists of ASCII characters (between 32..128)

CHKSUM: two hexadecimal digits of a one-byte checksum which contains the lower byte of the sum of characters between the <SOH> and <ETX> (incl. those, too).

9.2.3. Format of Acknowledge of the Receiver

The receiver must acknowledge transmission by the following message:

<ACK>CMD MID
CMD: the type of the next package to send – this makes possible to a
request for histograms. If no more packages are required,
<SPACE> should be sent.
MID: the identifier of the package that acknowledged by this
message.

If receiving of the message was not successful, <NAK> should be sent, and the analyzer will repeat the last package.

The receiver has approx. 1 second to reply, otherwise the analyzer will repeat the last transmission, twice automatically. But if still no response after 3 trials, the analyzer will not start to communicate any more, even if there is data to send (see General Description).

9.2.4. Detailed Description of Packages

The packages sent by the analyzer are placed between a header and a tail. There are 3 main types of them: INIT, DATA and histogram packages. The histogram package can be: RBC, WBC, and PLT. The format of histograms are the same, type descriptor differs only.

INIT package

Analyzer sends the general identifiers by this package during initiation of communication:

DEVICE<HT>VERSION<HT>DATE<HT>TIME

DEVICE:	device identifier
VERSION:	version of the software, e.g. "1.7"
DATE:	date in YYYYMMDD format
TIME:	time in HHMMSS format

DATA package

This package contains sample and patient data, the measured parameters and the markers of histograms. One data element consists of two items: name and value, which are separated by a <HT> character, and closed by <LF>.

Important! SNO, DATE, TIME, SID and PID fields will always be present in this order, but other fields may be omitted.

SNO <ht></ht> 152 <lf></lf>	internal identifier
DATE <ht></ht> 19980715 <lf></lf>	date of measurement (YYYYMMDD)
TIME <ht></ht> 114500 <lf></lf>	time of measurement (HHMMSS)
SID <ht></ht> 1AXX435 <lf></lf>	sample identifier (alphanumeric)
PID <ht></ht> B72D44 <lf></lf>	patient identifier (alphanumeric)
NAME <ht>JOE SMITH<lf></lf></ht>	patient name (alphanumeric)
BIRTH <ht></ht> 19650208 <lf></lf>	birth date of patient (YYYYMMDD)
SEX <ht>0<lf></lf></ht>	patient sex (0-male, 1-female)
DOC <ht></ht> Dr John Gold <lf></lf>	doctor's name
OPID <ht></ht> 1172 <lf></lf>	operator identifier (alphanumeric)
MODE <ht>0<lf></lf></ht>	patient type
WRN <ht></ht> 0 <lf></lf>	warning bits ¹ (32-bit hexadecimal)
PM1 <ht></ht> 12 <lf></lf>	PLT lower marker ²
PM2 <ht></ht> 204 <lf></lf>	PLT upper marker ²
RM1 <ht></ht> 51 <lf></lf>	RBC lower marker ²
WM1 <ht></ht> 23 <lf></lf>	WBC upper marker ²
WM2 <ht></ht> 57 <lf></lf>	WBC LYM-MID marker ²
WM3 <ht></ht> 92 <lf></lf>	WBC MID-GRA marker ²
PARN <ht></ht> 22 <lf></lf>	number of parameters to send
P01 <ht></ht> 6.6 <ht></ht> 0 <lf></lf>	first parameter ID ^{3,} value and flag ⁴
P02 <ht></ht> 4.29 <ht></ht> 0 <lf></lf>	second parameter ID, value and flag

•••

last parameter ID, value and flag

Remarks:

P22<HT> 8.2<HT>0<LF>

Bit	Mask	Letter	Meaning	
0	0x00001	С	RBC/PLT clogging.	
6	0x00040	b	RBC blank is high, or no RBC blank.	
7	0x00080	р	PLT blank is high, or no PLT blank.	
8	0x00100	C,Q	WBC clogging.	
14	0x04000	В	WBC blank is high, or no WBC blank.	
15	0x08000	Н	HGB blank is high, or no HGB blank.	
16	0x10000	Е	No WBC three part.	

¹ Position and meaning of the warning flags:

² The markers are given in histogram channel between 0 and 255, where 0 means that the marker could not be found.

³ The parameter IDs in the analyzer are: P01: WBC (10⁹/I); P02: RBC (10¹²/I); P03: HGB (g/I); P04: HCT (%); P05: MCV (fI); P06: MCH (pg); P07: MCHC (g/I); P08: PLT (10⁹/I); P09: PCT (%); P10: MPV (fI); P11: PDWsd (fI); P12: PDWcv (%); P13: RDWsd (fI); P14: RDWcv (%); P15: LYM (10⁹/I); P16: MID (10⁹/I); P17: GRA (10⁹/I); P18: LYM% (%); P19: MID% (%); P20: GRA% (%); P21: RBCtime (sec); P22: WBCtime (sec).

⁴The parameter value is always 4 characters wide, spaces from left added if necessary. It can be 9999, if the value could not be displayed in 4 digits, or '----' if the value could not be calculated because of an error.

Flag	Displayed	Meaning	
0		Value correct.	
1	+	Value high (more than upper limit)	
2	_	Value low (less than lower limit)	
3	*	Value is unreliable.	
4	Е	Value not given because of error. Value is	
5		Value cannot be calculated. There is no value!	

The meaning of the parameter flags:

RBC, WBC and PLT package

The format of the histogram packages are the same, they differ in type descriptor only. The package contains the sample data (to identify the package) and the histogram.

SNO <ht></ht> 152 <lf></lf>	internal identifier
DATE <ht></ht> 19980715 <lf></lf>	date of measurement (YYYYMMDD)
TIME <ht></ht> 114500 <lf></lf>	time of measurement (HHMMSS)
SID <ht></ht> 1AXX435 <lf></lf>	sample identifier (alphanumeric)
PID <ht></ht> B72D44 <lf></lf>	patient identifier (alphanumeric)
CHN <ht></ht> 256 <lf></lf>	number of histogram channels (256)
9 <ht></ht>	value of first histogram channel
1 <ht></ht>	value of 255 th histogram channel
0	value of the last histogram channel

Example

Let us suppose that the receiver was not ready to receive when the analyzer was switched on, therefore the instrument is not starting a communication.

Receiver sends that it is ready to receive now, the analyzer sends acknowledge.

<ENQ>

<ACK>

```
Analyzer sends INIT next time to initiate link (there is data to send):
<SOH>AI<STX>Abacus<HT>1.5<HT>20030405<HT>160734<ETX>E4<EOT>
Receiver sends acknowledge:
<ACK><SPACE>A
```

The analyzer sends DATA package:

<SOH>BD<STX>SNO<HT>1<LF>DATE<HT>20010405<LF>TIME<HT>163800<LF>SID<HT>1<LF>PID<HT><LF>BIRTH<HT>0000000<LF>SEX<HT>0<LF>DOC<HT><LF>OPID<HT>0<LF>MODE<HT>0<LF>WRN<HT>0<LF>PM1<HT>10<LF>PM2<HT>135<LF>RM1<HT>34<LF>WM1<HT>21<LF>WROLF>PM3<HT>91<LF>PARN<HT>22<LF>P01<HT>6.4<HT>0<LF>P02<HT>4.36<HT>0<LF>P07<HT>33<5<HT>0<LF>P08<HT>262<HT>0<LF>P09<HT>0<LF>P09<HT>0.24<HT>0<LF>P10<HT>9.2<HT>0<LF>P11<HT>12.0<FT>0<LF>P12<HT>36.9<HT>0<LF>P13<HT>152.3<HT>1<LF>P14<HT>16.3<HT>0<LF>P15<HT>2.1<HT>0<LF>P20<HT>2.1<HT>0<LF>P16<HT>0.2<HT>0<LF>P17<HT>3.7<HT>0<LF>P18<HT>3.4<HT>0<LF>P19<HT>7.8<HT>1<LF>P20<HT>58.8<HT>0<LF>P21<HT>8.4<HT>0<LF>P22<HT>5.0<HT>0<LF><T>89<EDT>

Receiver acknowledges DATA transmission, and requests for RBC package:

<ACK>RB

The analyzer sends RBC package:

<SOH>CR<STX>SNO<HT>1<LF>DATE<HT>20010405<LF>TIME<HT>163800<LF>SID<HT>1<LF>PID <HT>57290<LF>CHN<HT>256<LF>4<HT>9<HT>17<HT>27<HT>37<HT>48<HT>58<HT>66<HT>70<HT>72 <HT>70<HT>66<HT>60<HT>54<HT>47<HT>39<HT>33<HT>28<HT>22<HT>18<HT>15<HT>11<HT>9<<HT>8<</p> 1<HT>1<HT>1<HT>2<HT>2<HT>3<HT>4<HT>5<HT>6<HT>7<HT>8<HT>9<HT>10<HT>11<HT>12<HT>14<H T>16<HT>18<HT>21<HT>24<HT>28<HT>31<HT>35<HT>38<HT>43<HT>47<HT>53<HT>58<HT>65<HT>71< HT>78<HT>86<HT>94<HT>103<HT>113<HT>121<HT>130<HT>139<HT>149<HT>160<HT>171<HT>184<HT> 196<HT>207<HT>217<HT>225<HT>231<HT>237<HT>242<HT>245<HT>248<HT>251<HT>252<HT>253<HT> 253<HT>253<HT>253<HT>253<HT>254<HT>254<HT>255<HT>254<HT>252<HT>248<HT>243<HT>236<HT>229<HT> 221<HT>214<HT>207<HT>199<HT>192<HT>185<HT>170<HT>170<HT>162<HT>154<HT>146<HT>137<HT> 129<HT>121<HT>113<HT>104<HT>96<HT>88<HT>82<HT>75<HT>71<HT>66<HT>62<HT>58<HT>55<HT>51 <HT>47<HT>43<HT>38<HT>35<HT>31<HT>28<HT>25<HT>22<HT>19<HT>18<HT>16<HT>14<HT>12<HT>1 1<HT>10<HT>9<HT>9<HT>9<HT>9<HT>9<HT>8<HT>8<HT>7<HT>7<HT>6<HT>5<HT>5<HT>5<HT>5<HT>4<HT>4

Receiver acknowledges RBC transmission, and requests for WBC package: <ACK>WC

The analyzer sends WBC package:

<SOH>DW<STX>SNO<HT>1<LF>DATE<HT>20010405<LF>TIME<HT>163800<LF>SID<HT>1<LF>PID T>255<HT>255<HT>251<HT>209<HT>163<HT>118<HT>82<HT>56<HT>40<HT>32<HT>29<HT>29<HT>30<H T>34<HT>40<HT>47<HT>55<HT>64<HT>76<HT>88<HT>103<HT>119<HT>136<HT>155<HT>174<HT>195<H T>215<HT>233<HT>246<HT>254<HT>255<HT>249<HT>240<HT>227<HT>213<HT>200<HT>187<HT>176<H T>164<HT>153<HT>141<HT>129<HT>118<HT>108<HT>99<HT>92<HT>86<HT>81<HT>76<HT>71<HT>67<H T>64<HT>62<HT>61<HT>60<HT>60<HT>60<HT>57<HT>55<HT>51<HT>47<HT>44<HT>43<HT>42<HT>42< HT>43<HT>44<HT>45<HT>47<HT>47<HT>46<HT>45<HT>43<HT>40<HT>37<HT>34<HT>32<HT>30<HT>30<HT>30 <ht>30<ht>30<ht>29<ht>28<ht>26<ht>24<ht>21<ht>19<ht>17<ht>15<ht>14<ht>13<ht>12<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht>11<ht 11<ht>11<ht 11<ht 11 3<HT>13<HT>13<HT>13<HT>13<HT>12<HT>11<HT>11<HT>11<HT>12<HT>12<HT>14<HT>15<HT>16<HT> 17<HT>17<HT>17<HT>17<HT>17<HT>17<HT>17<HT>17<HT>17<HT>17<HT>17<HT>18<HT>22<HT>22<HT>23<HT >24<HT>25<HT>25<HT>25<HT>26<HT>29<HT>31<HT>34<HT>35<HT>36<HT>36<HT>35<HT>35<HT>35<HT>35<HT>36<HT>36<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT>35<HT<35<HT>35<HT<35<HT>35<HT<35<HT<35<HT<35<HT<35<HT<35<HT<35<HT<35<HT<35<HT<35<HT<35<HT<35<HT<35<HT<35<HT<35<HT<35<HT<35<HT<35<HT<35<HT<35<HT<35<HT<35<HT T>37<HT>38<HT>41<HT>43<HT>46<HT>47<HT>48<HT>50<HT>52<HT>56<HT>60<HT>64<HT>70<HT>74< HT>79<HT>82<HT>86<HT>89<HT>92<HT>95<HT>99<HT>102<HT>103<HT>104<HT>105<HT>105<HT>106< HT>108<HT>110<HT>112<HT>115<HT>117<HT>119<HT>120<HT>121<HT>120<HT>120<HT>120<HT>120<HT>120<HT>121< HT>122<HT>125<HT>129<HT>132<HT>136<HT>139<HT>141<HT>142<HT>142<HT>140<HT>138<HT>135< HT>132<HT>129<HT>127<HT>125<HT>123<HT>122<HT>120<HT>117<HT>115<HT>112<HT>109<HT>108< HT>108<HT>109<HT>110<HT>110<HT>108<HT>104<HT>99<HT>94<HT>89<HT>85<HT>82<HT>80<HT>79< HT>78<HT>77<HT>75<HT>72<HT>68<HT>63<HT>58<HT>54<HT>50<HT>47<HT>44<HT>43<HT>41<HT>41 <HT>42<HT>42<HT>42<HT>42<HT>39<HT>37<HT>34<HT>30<HT>28<HT>25<HT>24<HT>23<HT>22<HT>2 2<HT>21<HT>21<HT>19<HT>17<HT>13<HT>9<HT>5<ETX>F7<EOT>

Receiver acknowledges WBC transmission, and closes the link. It is possible to request for PLT histogram if the acknowledge contains a "P" instead of <SPACE>, but it is not shown in this example.

<ACK><SPACE>D

9.3. UPLOADER: Software upgrading tool for Abacus Junior B

This tool allows you to update AJB's software core, language module, settings and profiles.

In AJB there's a controller card which has a microcontroller responsible for the instrument operations. There's a special part of the microcontroler firmware (a kind of software) which provides the upgradeability of its core functions. This special part of the firmware is called boot loader.

For the software update you need:

- Abacus Junior B
- Serial cable (9-pin)
- A PC with Windows OS
- ...and the uploader software called ProjectCloud.

Installing Uploader:

- 1. Create somewhere on your PC's harddrive a directory for example ABJB.
- 2. you have to copy thefollowing files into this directory:

ProjectCloud.exe ProjectCloud.res borIndmm.dll CC3250mt.dll CportLibCB5.bpl vcl50.bpl vcbde50.bpl vcldb50.bpl

3. Create a directory for the source file of the firmware to be updated. The PC's software automatically will search for a \HEX directory, so it is not cumpolsory but advisable name your directory HEX and place it into the installation directory.

Now, we have the following structure:

D:\ABJB:			
2004.05.26.	11:59	<dir></dir>	
2004.05.26.	11:59	<dir></dir>	
2004.05.26.	11:55	<dir></dir>	HEX
2000.01.31.	05:00		25600 borlndmm.dll
2000.01.31.	05:00		1496064 cc3250mt.dll
2003.12.11.	16:17		142848 CportLibCB5.bpl
2004.05.26.	12:08		3534 dir.txt
2004.05.25.	14:36		89600 ProjectCloud.exe
2004.04.14.	13:33		876 ProjectCloud.res
2000.01.24.	05:01		2023424 vcl50.bpl
2000.01.24.	05:01		300032 vclbde50.bpl
2000.01.24.	05:01		558080 vcldb50.bpl

4. Place the file to be uploaded into HEX directory

9.3.1. Process of SW download (AJB)

- <u>At AJB's POWER OFF state</u> connect the serial cable to the PC's serial port. IMPORTANT: Your PC has to be equipped with at least one serial port, which is enabled by BIOS and Win OS, too. This port must not be used by any other device or application during the upload process.
- 2. Switch on the PC (but don't switch on the instrument!), login to windows and start **projectcloud.exe**
- 3. Now you have to see this:

We what as 20000 p ahro	ader, PC utility, version: 1,1	
Serial Communication Open Port 🔲 nothing	Serial Setting	
Megnyitás	2 🔀	
Hely: 🔁 hex		
pbcc.hex		
Fáil <u>n</u> év: pbcc.hex	Megnyikás	

...the program started with a LOAD dialog. Select the hex file you want to upload and press Open.

If you press Cancel, the program closes itself.

4. The file loads into the PC's memory, and right after this it will be preprocessed (converted into binary format).

5. You don't need to open(it will be opened automatically) the serial port if all the default settings of the port are correct.

6. Choose the modules that you would like to upload into AJB.

This section is hierarchical up to down, so if you want to choose "Language" the "Core" will be selected as well and if you want to select "Settings" the "Core" and the "Language" modules will be selected as well, and of course if you want to select "Profil" all the modules will be selected.

7. Click on SEND button.

This will automatically open the serial port and wait for an "Enquery packet" from the Instrument. **So NOW, please switch on the Instrument !** This action has 2 minutes time out, that you can see under the Cancel button.

8. On the right hand side of the application's window you will see the message of the Enquiry packet's arrival. After this, several seconds needs for the Instrument to free the memory. Finally, a counter will count down with the addresses of the currently written target memory.

9. If everything went OK you get an "Done OK" message. The applicaton closes the serial port automatically and the instrument starts the new firmware.

You get a popup error message if something's wrong with the communication or the port's settings wrong.

Projectcloud 🛛 🛛 🔀
UnUsable serial port setting!
OK

You can change the settings of the serial port by clicking the "serial setting" button.

In this application there are only two valid settings:

- baud rate: 115200, parity: None, data: 8, stop:1
- baud rate: 9600, parity: None, data: 8, stop:1

For the ease of usage, this values are highlighted in the window.

If the port is open the changes of settings won't take effect until you close the port.

Important !

The instrument's default communication settings are:

baud rate: **115200**, parity: **None**, data: **8**, stop:**1**.

To start the instrument with the slower settings hold down Start Button while you switch on the instrument.

(baud rate: **9600**, parity: **None**, data: **8**, stop:**1**)

9.3.2. Troubleshooting of SW download (AJB)

If PC and AJB cannot communicate with each other, but everything (cables, program, settings) seems to be all right...

- 1. Is COM port disabled by BIOS?
- 2. Is COM port disabled by the operating system (WIN)?
- 3. Does the PC's mother board have IrDA port? On several motherboards if it's enabled COM1 turns into COM2 and COM1 will be used by IrDA.
- 4. Is it a shared IRQ problem in the operating system?
- 5. Is COM port used by another application/device? Several applications can change the parameters of the COM port by the PC's startup.

Fail-safe addresses and IRQ's for COM ports:

- COM1: 03F8h, 4
- COM2: 02F8h, 3
- COM3: 02E8h, 4
- COM4: 03E8h, 3

If you think that your AJB's COM port doesn't function, you can check it with an oscilloscope, because the instruments serial port sends 10 bytes out on it every time you power on the system.

- 00: 05
- 01: 117
- 02:112
- 03: version of the boot loader
- 04: version of the software High byte
- 05: version of the software Low byte
- 06:00
- 07:00
- 08:00
- 09: Checksum

Checksum can be calculated by the following formula:

256- (Low byte of (SUM(00-08 bytes)))

9.4. Abacus junior cabling diagram - AJ/AJvet

9.5. Abacus junior B cabling diagram - AJB

9.6. Abacus junior / Abacus Junior B tubing schematics - AJ/AJB

9.7. Abacus junior Vet tubing schematics - AJvet

9.8. Recommended kit of tools

- PC standard keyboard (PS/2)
- Screwdrivers:
 - Cross Slot Screwdrivers (Philips)
 - Slot Screwdrivers
 - O Hexagon Screwdrivers (3.5, 2.5, 2.0, 1.5 mm sizes)
- Pocket digital multimeter
- Diagonal Cutter (plier)
- Nipper

9.9. Electronic schematics

Electronic schematics can be found in the following Appendices (in PDF).

Board name	File name	AJ/AJvet	AJB
COMB board	AJ-Comb_v3.14	х	
PPB board	AJ-PPB_v3.14	х	
IDEEPROM board	AJ-IDBoard_v3.0	х	
Measuring board	AJ-Meas_v3.1	х	х
Dilutor Opto board	AJ-DilOpt2M_v3.1	х	х
Micro Dilutor board	AJ-MicroD_v3.0	х	х
Display board	AJ-DispIC_v3.1	х	
Keypad	AJ-mckeyb_v2.1	х	
Reagent Sensor board	AJ-ReagS_v3.0	х	х
START button and LED	AJ-StartGLED_v3.0	х	х
XYR Opto board	AJ-XYROpto_v3.1	х	х
Valve Module 1-5	AJ-valve_1-5v30	Х	х
Valve Module 6-12	AJ-valve_6-12_v31	х	х
Main_v3.01	AJ-Main_v3.01		х

∀GNDD

VCC

C6

100n

☆ gndd

 \bigtriangledown gndd

DIO5 DIO1 V_OUT K_OUT

K_OUT_X

V_OUT_X

IC2:B

IC2:A

R24 W 470R

R25 470R

RSTDRV

RST_V

Thru-Hole version

DIO9_X DIO8_X DIO7_X DIO6_X

SN74HCT244DW

DI05_

3.13: R67 added to the #CTS of the INTPRN(COM2) Some documentational correction R65 became a pull-down, BEFORE IC7

Company	r: Dia tron MI Lt e	d.
iA ^{:eltiT}	nalog section and other	circuits
Size:	Number: 01-AJ-COMB v3.14	Revision: 3.14
Approve	d by: Mendele Bálint	Signature:
Author:	Katus Ferenc	Last Modified: Wed Aug 13, 2003
Filename	AJ-COMB_v3.14.sch Sheet 1 of 4	

Filename: AJ-COMB_v3.14.sch Sheet 3 of 4

Company	r: Dia tron M	/II Ltd.	
Title: Di	mmPC and the Co	nfig PIC	
Size:	Number:		Revision:
	01-AJ-Comb v3.14		3.14
Approve	by: Mendele Bálint	Signature	:
Author:	Katus Ferenc	Last Mod Wed	ified: Aug 13, 2003
Filename	: AJ-COMB_v3.14.sch	Sheet	4 of 4

Dimm Socket

Company	Dia tron MI	Ltd.		
^{Title:} Aba	cus Jnr Control and	l Measurem	ent Boar	d v3.14
	Drawing Number: 03-AJ-COMB_\	/3.14	Revision: 3.14	
Approved	by: Mendele Bálint	Signature:	•	
Author:	Katus Ferenc	Modified: Wed Aug	13, 2003	
File name	:AJ-COMB_v3.14.pcb	Layer:Top S	ilk	

	.td.	MI L	Diatron		Company:
rd v3.14	surement Boai	l Mea	ontrol and	ıs Jnr. – C	Title: Abacı
Revision: 3.14	3.14	₩8	ımber: 3–AJ–CON	Drawing Nu 0	
	Signature:		: Balint	by: Mendele	Approved
3, 2003	Modified: Wed Aug 1		nc	Katus Fere	Author:
	Layer:Bot Silk		v3.14.pcb	AJ-COMB	File name:

 $\overline{\nabla}$

Company:	Diatron Ltd.		
Title: Po	wer Supply		
Size:	Number:		Revision:
	03-AJ-PPB v3.14		3.14
Approved I	oy: Gyetvai Árpád	Signature:	
Author: N	agy István	Date: Tue Aug	j 26, 2003
Filename:	PPB v3.14.sch	Sheet 1	of 4

Compan	y: Diatron	Ltd.	
Title: Va	alves, Sensors and	Connector	s
Size:	Number: 03-AJ-PPB v3.14		Revision: 3.14
Approve	d by: Gyetvai Árpád	Signature	
Author:	Nagy István	Date: Tue A	ug 26, 2003
Filename	e: PPB v3.14.sch	Sheet	2 of 4

Pin 3 is not used, it is connected to ground for the sake of easier routing on the PCB.

Sample rotor

M21_3 M12_3

CUR_3

ino

D35

+12V

 $\overline{}$

<u>∕</u>D39

+5V

C16 47N

 \forall

 \triangleleft \triangleleft

+ C15

C11 47N Ŧ 10U-16V

 $\stackrel{\bullet}{\bigtriangledown}$

Y motor

Company:	Diatron	Ltd.	
Title: X, Y	(and Sample Rot	ator	
Size:	Number:		Revision
	03-AJ-PPB v3.14		3.14
Approved I	^{by:} Gyetvai Árpád	Signature	:
Author: N	agy István	Date: Tue Au	ıg 26, 2003
Filename:	ne: PPB v3.14.sch Sheet 3 of 4		

Company	Diatron	Ltd.	
Title: AJ-	Pneumatic and Powe	r Board v3.1	4
	Drawing Number: 03-AJ-PPB v	3.14	Revision: 3.14
Approved	by: Mendele Bálint	Signature:	
Author:	Nagy István	Modified: Thu Aug 14, 2003	
File name	:PPB_v3.14.pcb	Layer:Top Silk	

\oplus
\oplus
\oplus
\oplus
\oplus

\oplus

	Diatron Ltd. Pneumatic and Power Board v3.14			Company:
				Title: AJ-P
	Revision: 3.14	.14		
		by:Mendele Balint Signature:		Approved
	Modified: Thu Aug 14, 2003		Nagy Istvan	Author:
		Layer:Bot Silk	PPB_v3.14.pcb	File name:

Company	: Dia tron MI	Ltd.		
Title: Abacus Junior Measuring Board v3.1				
	Drawing Number: 01-AJ-MEAS_V3.1		Revision: 3.1	
Approved by: Gyetvai Árpád Signature:				
Author: F	ábián György	Modified: Mon Aug 11, 2003		
File name:AJ-MEAS_v3.1.pcb Layer:Top			ilk	

	.td.	MI L	Diatron	:	Company
Title: Abacus Junior Measuring Board v3.1					
Revision: 3.1	Drawing Number: 01-AJ-MEAS_V3.1				
roved by:Gyetvai ∔rp8d Signature:			Approved		
Modified: Mon Aug 11, 2003			÷rgy	Fabian Gy-	Author:
Layer:Bot Silk			v3.1.pcb	AJ-MEAS	File name

Revision History (GyA) V1.0 -> V3.1: 1. CONN1-25 was tied to GND, changed now tied to VCC (because of PPB) ! 2. LEDB_1 and LEDB_2 name exchange !

Company:	company: Diatron MI Ltd.					
Title: AJ Dilutor Opto Board for 2 motors						
Size:	Number:		Revision:			
	01-AJ-DILOPT2M v3.1		3.1			
Approved	by: Gyetvai Árpád	Signature:				
Author: K	atus Ferenc	Last Modified: Tue Jul 15, 2003				
Filename:	AJ-Dilopt2M_v3.1.sch	Sheet 1	of 1			

	_td.	MI L	iatron	D	Company:
	- litle: AJ Dilutor Opto Board for 2 motors				
Revision: 3.1	v3.1	PT2M	ber: AJ—DILO	Drawing Num 01–/	
	Signature:		bac	by:Gyetvai ∔rj	Approved
Modified: Katus Ferenc Mon Aug 04, 2003		Author:			
	Layer:Bot Silk	da	v3.1.pc	AJ-Dilopt2M	File name:

Company	: Dia tron MI	Ltd.				
Title: AJ	Title: AJ Dilutor Opto Board for 2 motors					
	Drawing Number: 01-AJ-DILOPT2I	M v3.1	Revision: 3.1			
Approved	^{by:} Gyetvai Árpád	Signature:				
Author:	Katus Ferenc	Modified: Mon Aug (04, 2003			
File name	AJ-Dilopt2M_v3.1.pcl	Layer:Top S	ilk			

Company	Dia tron MI	Ltd.			
Title: Abacus Junior Display Module					
	Drawing Number: AJ-DispIC v3	3.1	Revision: 3.1		
Approved	Approved by: Gyetvai Árpád Signature:				
Author: Katus Ferenc		Modified: Tue Aug 2	26, 2003		
File name	:AJ-DisplC_v3.1.pcb	Layer:Top S	ilk		

Company: Diatron MI Ltd.
Abacus Junior Display Module
Drawing Number: Revision: AJ—DisplC v3.1 3.1
Approved by:Gyetvai ⊥rpød Signature:
huthor: Modified: Katus Ferenc Tue Aug 26, 2003
ile name:AJ—DispIC_v3.1.pcb Layer:Bot Silk

1.1 PCB: changes in placement MS-MicroD v1.2 >>> AJ-MicroD v3.0

Company:	Dia tron MI Ltd.					
Title: Abacus Junior Micro Dilutor v3.0						
Size:	Number: 01-AJ-MicroD v3.0		Revision: 3.0			
Approved	by: Mendele Bálint	Signature:				
Author: Last Modified: Katus Ferenc Tue Jul 15, 20			ied: Il 15, 2003			
Filename: AJ-MicroD_v3.0.sch Sheet 1 of 1						

Company	: Dia tron MI	Ltd.	
Title: Aba	acus Junior Micro Dilut	tor	
	Drawing Number: AJ-MicroD v3	3.0	Revision: 3.0
Approved	^{by:} Mendele Bálint	Signature:	
Author:	Katus Ferenc	Modified: Mon Aug 2	25, 2003
File name	AJ-MicroD_v3.0.pcb	Layer:Top S	ilk

	_td.	MI L	Diatron		Company:
	Title: Abacus Junior Micro Dilutor				
Revision: 3.0	0.	D v3.	mber: AJ—Micro	Drawing Nu	
	Signature:		Belint	by:Mendele	Approved
hor: Modified: Katus Ferenc Mon Aug 25, 2003		Author:			
	Layer:Bot Silk	File name:AJ-MicroD_v3.0.pcb			

Revision Note Table 1.1: SCH, PCB connection established, Smaller PCB changes 3.0 MS-* v1.1 >>> AJ-* v3.0

Company:	Dia tron MI Lto	i.					
Title: Ab	Title: Abacus Junior Reagent Sensors						
Size:	Number: 01-AJ-ReagS v3.0		Revision: 3.0				
Approved by: Mendele Bálint Signature:							
Author: Katus Ferenc Last Modified: Wed May 21, 20			ied: ay 21, 2003				
Filename:	AJ-ReagS_v3.0.sch	Sheet 1	of 1				

Company	: Dia tron MI	Ltd.	
Title: Aba	cus Junior Reagent s	ensors	
	Drawing Number: AJ-ReagS v3	3.0	Revision 3.0
Approved	by:Mendele Bálint	Signature:	
Author:	Katus Ferenc	Modified: Wed May	21, 200
File name	:AJ-ReagS_v3.0.pcb	Layer:Top S	ilk

	_td.	MI L	Diatron	:	Company:
	Title: Abacus Junior Reagent sensors				
Revision: 3.0	0	S v3.	ımber: AJ—Reag	Drawing Nu	
	Signature:		Belint	by:Mendele	Approved
Modified: Wed May 21, 2003			nc	Katus Fere	Author:
	Layer:Bot Silk		v3.0.pcb	AJ-ReagS	File name:

Vertical Motor

CV2

1x6 pin, *

Revision Note Table 1. Abacus Junior specialized design 3.1 : C2 and C3 added, for filtering

Company:	Dis tron N	/II Ltd.				
Title: Abacus Junior XYR OPTO Board						
Size:	Number: 01-AJ-XYROpto v3.1		Revision: 3.1			
Approved by: Mendele Bálint Signature:						
Author: Katus Ferenc Last Modified: Tue Jul 15, 2003						
Filename: XYROpto_v3.1.sch Sheet 1 of 1						

Company	Dia tron MI	Ltd.			
Title: Abacus Junior XYR OPTO Board					
	Drawing Number: AJ-XYROpto ^v)rawing Number: AJ-XYROpto V3.1			
Approved	Approved by: Katus Ferenc Signature:				
Author: Gyetvai Árpád		^{Modified:} Thu Aug (07, 2003		
File name:AJ-XYopto V3.1.pcb		Layer:Top S	ilk		

	.td.	MI L	Diatron	:	Company	
Title: Abacus Junior XYR OPTO Board						
Revision: 3.1	5.1	Drawing Number: AJ—XYROpto V3.1				
	Signature:		s Ferenc	by:Katus	Approved	
7, 2003	Modified: Thu Aug Ø		baqı	Gyetvai -	Author:	
	Layer:Bot Silk		oto V3.1.pcb	aoYX—LA:	File name	

Company:	Dia tron MI Ltd.									
Title: Abacus Junior Start Button and LED										
Size:	Number: I 01-AJ-StartGLED v3.0									
Approved	by: Mendele Bálint	Signature:								
Author: K	atus Ferenc	Date: Tue Aug	g 26, 2003							
Filename:	AJ-StartGLED_v3.0.sch	Sheet 1	of 1							

Company	Dia tron MI	Ltd.					
Title: Abacus Junior Start Button and LED							
	Drawing Number: AJ-StartGLED	Revision: 3.0					
Approved	by: Mendele Bálint	Signature:					
Author:	Katus Ferenc	Modified: Tue Mar 1	11, 2003				
File name	:AJ-StartGLED_v3.0.p	bbyer:Top S	ilk				

	_td.	MI L	itron	Dia	:	Company
Title: Abacus Junior Start Button and LED						
Revision: 3.0	Drawing Number: AJ-StartGLED v3.0					
	Signature:		int	ndele Bal	by:Me	Approved
1, 2003			Ferenc	Katus	Author:	
	Layer:Bot Silk	doc	v3.0.p	tartGLED	IS−LA:	File name

				000					
8	8	8	٩	8	٩	8	٩	8	8

Company:	Diatron MI	.td.					
Title: Abac	itle: Abacus Junior Valve Module 1—5 v3.0						
	Drawing Number: 01—AJ—Valve_ 1—	Revision: 3.0					
Approved	by:Mendele Balint	Signature:					
Author:	Gyetvai [⊥] rp₿d	Modified: Tue Aug 26, 2003					
File name:	Valve 1 5 V3.0.pcb	Layer:Bot Silk					

	2x5mil	00000 itary		
8 V1 8		0 v3 0	0 v4 0	8 v5 8
Valve 1-5	V3.0			

Company	: Dia tron MI	Ltd.				
Title: Abacus Junior Valve Module 1-5 v3.0						
	Drawing Number: 01-AJ-Valve_1-	Revision: 3.0				
Approved	^{by:} Mendele Bálint	Signature:				
Author:	Syetvai Árpád	Modified: Tue Aug 2	26, 2003			
File name:Valve 1_5 V3.0.pcb Layer:Top Silk						

				2x5mili		800							
V alve	9 e 6–12	9 V3.1	8	8	8	8	8	8	8	8	8	8	8

Company	: Dia tron MI	Ltd.					
Title: Abacus Junior Valve Module 6-12							
	Drawing Number: 01-AJ-Valve 6-1	Revision: 3.1					
Approved	by: Mendele Bálint	Signature:					
Author: G	Syetvai Árpád	Modified: Tue Aug 2	26, 2003				
File name	:Valve 6_12 V3.1.pcb	Layer:Top S	ilk				

∧ €	5	٨	7	٨	8 000	866 ^	9	٨	10	۸	11	٨	12
8	8	8	8	8	8	8	8	8	8	8	8	8	8

Company	: Dia tron MI	Ltd.					
Title: Abacus Junior Valve Module 6-12							
	Drawing Number: 01-AJ-Valve 6-12 v3.1						
Approved	by: Mendele Bálint	Signature:					
Author: G	Syetvai Árpád	Modified: Tue Aug 2	26, 2003				
File name	:Valve 6_12 V3.1.pcb	Layer:Bot Si	lk				

Company	Dia tron MI	Ltd.				
Title: Abacus Junior ID Board v3.0						
	Drawing Number: 03-AJ-IDBoard	l v3.0	Revision: 3.0			
Approved	Approved by: Mendele Bálint Signature:					
Author: G	Syetvai Árpád	Modified: Tue Mar 2	25, 2003			
File name:AJ-IDBoard_v3.0.pcbLayer:Top Silk						

	.td.	MI L	iatron	3	Company:
	us Junior ID I	Title: Abac			
Revision: 3.0	Drawing Number: 03–AJ–IDBoard v3.0				
	Signature:		Belint	by:Mendele E	Approved
5, 2003		t	Gyetvai ⊥rpa	Author:	
	c	v3.0.pcl	AJ-IDBoard	File name:	

	_	10				9	00	7			o		01					ω	N	-	
								Power Table										N	et Index Table]
₽	R	ef Des		Device	e(Type)		Package	VDD_RTC	, +5V	+12V	MAXV+	GNDD	-12V_A	MAX_V-	+8V	3V3	-12V_A	Analog[D8],	Power[H2]		$\left\{ \left \right\} \right\}$
	IC)1 L	L298H	N			L298 FEKVO		9	4		8,15,1					-ADIT_DG	Main[D2],A	nalog[B1]		11
		3	SN74F XC953	1CT15	7D 044C F	NIAR	SO-G16/D10_GLUED OFP10X10-G44/XAE_ENI ARGE	D.	16			15,8				35 26 15	A0	Main[17],Co	mm[G4]		-
	IC	34 L	L298H	N			L298 FEKVO		9	4		8,15,1					AN_ELV	Main[F10],A	nalog[D9]		-
		5 5	SN74H	ICT24	4DW		SO-G20/G7.1	5.0	20			1,19,10					AN_PEAK	Main[F10],A	nalog		1
		7 2	24FC2	56			SO-G8/Y1.7	5,0	1,8			3,4,2					AN_PRS CLK MAIN	Main[F10],N Main[A4][J7	1isc.[H4]].Misc.[E5]		$+\Gamma$
	IC	:8 L	L298H	N			L298 FEKVO		9	4		8,15,1					CS_DIGPOT	Main[F10],A	nalog[E5]		
		;9 N ;10 2	MIC58- 24FC2	41			DIP18 SO-G8/Y1 7		5 2.8	10		9,1,4					CS_ICD_MCLR	Main[H3],Po	ower[G8]		
	IC	:11 L	L298H	N			L298 FEKVO		9	4		8,15,1					CTS2	Main[H10],0	Comm[D9]		-
ω		12 N	MIC58	41			DIP18		5	10		9,1,4					DEN	Main[16],Co	mm[G4]		10
		;13 r ;14 L	L298H	N			L298 FEKVO		9 9	4		8,15,1					DHM	Main[C4],Ai	alog[D8]		-
		15 L	L033V	_STAN	IDING		TO-220AB-STANDING		3	4		1				2	DIL_CFG	Main[F10],N	lotor23M_V[G4]		1
		10 L	LZ96H	4			TO220_FEKVO		9	3		1,13,0			2		END_D END_L	Main[C3],M	otor23M_V[E5] otor23M_V[E2]		-
		18 F	P6CU-	XXXXZ	<u>Z</u>		SIP7#3#7			1		2,4	3				END_M	Main[C3],M	otor23M_V[F9]		1 🗖
		20	SN74F MCP42	1C1574 2XXX	4DW		SO-G20/G7.1 SO-G14/G3 KF		20			1,10 10.4					END_R	Main[B9],M	otorXYR[F3]		-
	IC	21 5	SN74H	ICT13	вD		SO-G16/D10		6,16			5,4,8					END_Y	Main[B9],M	otorXYR[G3]		-
		22 L	LM393 TI 0841				SO-G8 SO-G14/G3			4		2,4	11		8		EN_D	Main[A9],M	otor23M_V[B6]		11
0	IC	24	DG411	IDY			SO-G16		12	13		7,5,15,10	4				EN_L EN_M	Main[A9],M	otor23M_V[B9]		- <
		25 L	LM339	AD	-		SO-G14/G3		16		2	12		2	3		EN_R	Main[B9],M	otorXYR[C9]		11
		,20 ji	IVIAA2C	2723	L		50-010		10		~	15		5			EN_X EN Y	Main[B9],M	otorXYR[C6]		
																	FREE_TEMP	Main[F9],Mi	sc.[17]		11
\vdash	1																HOME_D	Main[C3],M	otor23M_V[F5] otor23M_V[F2]		$\downarrow \vdash$
																	HOME_M	Main[C3],M	ptor23M_V[D9]		11
1																	HOME_R	Main[B9],M	otorXYR[G3]		
1																	HOME_X	Main[B9],M	otorXYR[F3]		$\left \right $
D																	HSW	Main[H1],A	nalog[B8]		1 1
																	KBD0_IC KBD1_IC	Main[J4],Co	mm[A3] mm[A4]		$\left \right $
																	KBD2_IC	Main[J5],Co	mm[A4]		
																	KBD3_IC	Main[J5],Co	mm[A5]		-
																	KBD5_IC	Main[J5],Co	mm[A7]		┥┝
																	KBD6_IC	Main[J5],Co	mm[A7]		11
																	LED GREEN R	Main[J5],Co Main[H2],Co	omm[D2] omm[16]		+
																	LED_RED_R	Main[H2],C	omm[16]		11
m																		Main[B2],Ar Main[B2].Ar	nalog[G7] nalog[J7]		- ,
																	MA_MD	Main[D6],M	otor23M_V[B9]		
																	MA_YXRL MB_MD	Main[D7],M	otorXYR[D9],Motor23M_V[I	32]	
																	MB_YXRL	Main[D6],M	otorXYR[D9],Motor23M_V[B1],Analog[H8]	11
																	MC_MD	Main[D7],M	otor23M_V[C9],Analog[E9]		11
																	MD_MD	Main[P3],M	otor23M_V[C9]	5 гј,Апаюу[пој	-
																	MD_YXRL	Main[D7],M	otorXYR[D9],Motor23M_V[I	31]	11
																	MVON PA1	Main[H1],Ai	nalog[B8],Power[D2] Misc.[F2]		
-																	PB1	Analog[G5]	Misc.[F2]		1.
																		Main[B9],Ar	nalog[B1]]
																	PLS	Main[H1],A	nalog[B8]		+
																	PULSE	Main[A2],Ar	nalog[G2]		11
																	PUMP PW1	Analog[G5]	sc.[H3] Misc.[F2]		
	1																PWM_LCD	Main[J8],Co	mm[G2]		1
																	RB5 RB6	Main[J7],Co	mm[J2],Power[G9]		
																	RB7	Main[J7],Co	mm[J2],Power[G9]		
																	RD0	Main[G3],C	omm[E4]		- .
G																	RD2	Main[G3],C	omm[E4]		
																	RD3	Main[G4],C	omm[G4]		11
1																	RD5	Main[G4],C	omm[G4]		$\left \right $
1																	RD6	Main[G4],C	omm[E4]		11
	1																RSW	Main[G4],C	nalog[D8]		$ \uparrow$
1																	RTS1	Main[D7],C	omm[F9]		11
1																	RTS2 RX1	Main[H10],0	comm[D9]		$\left \right $
																	RX2	Main[H10],0	Comm[B9]		11
Т																	SCK	Main[17],Mo	tor23M_V[G6],Analog[E5],M	/lisc.[B6]	- =
1																	SDO	Main[17],Mo	tor23M_V[G6],Analog[E5]		$\left \right $
1																	SEL0	Main[E9],Mi	sc.[B2]		11
1	Ĩ	P	Ap	SIN	Sh	≣ 8]										SEL1 SEL2	Main[E9],Mi	sc.[D∠] sc.[B2]		$\left \right $
⊢	enan	thor.	prov	ë	eet N	mpa e:											SEL3	Main[E8],Mi	sc.[B3]		11
1	ne: A	<u>ک</u>	ed b			N.											SEL4 SENSE	Main[E8],Mi	sc.[B3] sc.[D2]		$\left \right $
1	JB-	itu:	Y.	03-A	tt a	<u> </u>											SLT	Main[D3],A	nalog[B1]		11
1	MAII	S I	Gye	JB -		<u>^</u>											SPKR	Main[D7],M	sc.[E9]		
-	_2 ≲	ere	tvai	" Main	Se la	5											ST_BUTT	Main[17],Co	mm[16]		
1	010	ňc	Árpa	×.	Ē	i 문											TCK	Main[C6],Po	ower[F10]		
	.sch		a,	2	ç	R T											TDO	Main[C6],P0	ower[F9]		$\left \right $
1	[]					n N											TEST	Main[H1],Ai	nalog[B8]		11
⊢	$\left \right $					2 =											TMS	Main[D3],A	nalog[J5]		$\downarrow \vdash$
1			s		10	a d											TX1	Main[D6],C	omm[F9]		11
1	Shee	_ast	igna			ן מ											TX2	Main[H10],0	Comm[B9]		
1	^	Mod	ture		a a	2											UTL	Main[A2],Ar	nalog[J2]		-
د	~	lified lay (2											WR	Main[16],Co	mm[E4]] ,
	9. 	,2 ÷		91 si																	
	ا‴ ا	Ş		n:																	
		÷ 1					1														1
		*									ĉ		(7)			~		ω			

).	Name		CODE				
2	Stepmotor						
	Front plate for fr	ame	AJ30024				
I	Joining bar lowe	r for frame	AJ30008				
1	Main moving blo	ck	AJ30001				
	Stepmotor holde	r for X	AJ30014				
I	Roller axle for X		AJ30017				
1	Belt roller for X		AJ30021				
I	Axle for Y opto c	og-wheel	AJ30016				
2	Bearing						
I	Opto board		J307				
I	Roller holder for	Х	AJ30019				
2	Tube						
I	Roller holder for	Y	AJ30020				
1	M3x3 hex set scr	ſew					
I	Moving block for	Y	AJ30003				
I	Aspirator tip fast	ener	AJ30028				
3	Washer D3						
I	M3x8 hex hub screw						
5	M3x10 hex hub screw						
1	M4x10 hex hub screw						
I	Bush	AJ30013					
2	M2,5x10 hex hul						
	MEGJEGYZÉS	DARAB	MÉRETARÁNY				
mek	bly I.	RAJZ	AJZSZÁM				
		RXY-00					

).	Name		CODE			
1	Timing belt MXL-					
1	Head washer		AJ31001			
2	Head washer tub	be				
1	Sealing for head	washer	AJ31002			
1	Stepmotor holde	r for Y	AJ30015			
2	Axle for X		AJ30005			
1	Joining bar uppe	r for frame	AJ30007			
1	Shaft coupling fo	or Y	AJ30010			
1	Drive stick for Y		AJ30009			
2	Axle for Y		AJ30006			
1	Opto flag		AJ30023			
1	Belt roller for Y		AJ30022			
2	Sliding tube for r moving block	main	AJ30002			
1	Timing belt faste	ener for X	AJ30011			
1	Roller axle for Y		AJ30018			
1	Timing pulley		AJ30501			
2	Border ring for Y	' timing p.	AJ30502			
1	Opto cog-wheel		AJ30600			
1	Bed-plate for Y of	pto c-w.	AJ30025			
1	Timing pulley for	· Х	AJ30401			
1	M3x6 countersur	nk screw				
2	Washer D2					
2	M2x6 hex hub so	rew				
1	M3x6 hex hub so					
5	M2,5x8 hex hub					
1	M3x6 slotted scr					
1	Timing belt MXL-					
1	Timing belt faste	ener for Y	RXY-11			
	MEGJEGYZÉS	DARAB	MÉRETARÁNY			
embly II.		RAJZSZÁM RXY-00 1				

).	Name		CODE			
2	Gear	AJ2D10016				
5	Fixing nut					
	Dilutor panel		AJ2D10001			
	Lower syringe ho	older	AJ2D10002			
	Opto board		J214			
3	M3x10 hex hub s	screw				
1	Actuator		AJ2D10204			
1	Lyse glass cover		AJ2D10102			
1	Lyse glass					
	Upper syringe ho	older	AJ2D10005			
2	M3x25 double er	nd bolt				
	Handle		AJ2D10013			
ļ	Leadin rod		AJ2D10203			
1	Piston washer D3					
1	Lyse piston	AJ2D10201				
	MEGJEGYZÉS	DARAB	MÉRETARÁNY			
			M 1:1			
		Dial	ron®			
oly	Ι.	RAJZSZÁM				
		2MD-00				

2.	Name	CODE					
I	Motor holder		AJ2D10003				
2	Stepmotor						
ļ	Leading rod		AJ2D10012				
I	Left sliding block		AJ2D10007				
	Right sliding bloc	:k	AJ2D10008				
ļ	Threaded pin		AJ2D10004				
2	Gear stick		AJ2D10006				
l	Adjuster		AJ2D10014				
l	Spacer 26		AJ2D10011				
2	Spacer 11		AJ2D10010				
2	Opto flag		AJ2D10015				
)	Washer D3						
ò	M3x6 hex hub so	crew					
}	M3x3 hex set scr	ſew					
1	Bush		AJ2D10009				
1	M4x10 countersu						
3	M3x12 hex hub s						
2	Leading bush	AJ2D10017					
1	Sealing ring						
	MEGJEGYZÉS	DARAB	MÉRETARÁNY				
			M 1:1				
		Dialron®					
bly		RAJZSZÁM					
		2MD-00-1					

).	Name		CODE
1	Stepmotor		
1	Motor holder		AJM10008
1	Gear 16.1		AJM10003
1	Gear axle		AJM10012
2	Seeger-ring		
2	Sliding ring		AJM10011
1	Gear 30.1		AJM10006
1	Gear 16.2		AJM10004
1	Gear 30.2		AJM10005
1	Central panel		AJM10010
1	Spindle		AJM10009
1	Leading billet		AJM10014
2	Leading rod		AJM10013
1	Piston		AJM10101
1	Piston cover		AJM10201
1	Cover panel		AJM10203
1	Opto board	pto board	
1	Opto flag		AJMVOL150
1	Fixing cover shee	et	AJM10002
1	Cover sheet		AJM10001
1	M3x10 countersu	unk screw	
1	Sealing ring		
1	1,6/1,2 tube		
2	Bearing		
1	M3x8 hex hub so	rew	
4	M3x6 countersur	nk screw	
1	M3 PEM fastener		
3	M25x8 countersu	unk screw	
1	Washer D2,5		
	MEGJEGYZÉS	DARAB	MÉRETARÁNY
		Dia	
mb	lv		
еполу		M2.1-00	

).	Name		CODE
	Stepmotor		
	Rotor		MB-06
	Door sheet		VOL-160
	Ball axle		MB-02
	Crank		MB-03
	Actuator		MB-04/1
l	Shaft		MB-04/2
	Bob		MB-05
2	Abutment		MB-01
2	Spacer		MB-07
2	Microswitch		AJMB10100
3	M3x3 hex set scr	3x3 hex set screw	
1	M3x10 hex hub s	10 hex hub screw	
2	M3x6 hex hub screw with flat end		
2	M2x8 countersur	nk screw	
ļ	M2x8 hex hub so	crew	
l	M4x5 hex set scr	ew	
ļ	M3x6 countersur	nk screw	
	MEGJEGYZÉS	DARAB	MÉRETARÁNY
			<u>M 1:1</u>
		Diatron®	
mbl	у	RAJZSZÁM	
,		MB-01	

MEGJEGYZÉS	DARAB	MÉRETARÁNY
		M 1:2
	Dial	ron®
bly	RAJZSZÁM	
5	AJASI	M-03

JELE

DÁTUM

	M3 PEM fastener		
ÍTÉS	MEGJEGYZÉS	DARAB	MÉRETARÁNY
MEGNE	l EVEZÉS		
Sheet III	. assembly		ZSZÁM SM-04

MEGJEGYZÉS	DARAB	MÉRETARÁNY
		M 1:2
	Dial	ron®
	RAJZ	SZÁM
	AJASI	M-05

Code for COMB with DimmPC: J111

ANYAGMEGNEVEZÉS		GNEVEZÉS	FELÜLETKIKÉSZÍTÉS	
RAJZ. DÁTUM		DÁTUM	MEGNEVEZÉS	
ozás	JELE	DÁTUM	Structu	re 01.
/ÁLT				

MEGJEGYZÉS	DARAB	MÉRETARÁNY
		M 1:2
	Dia	ron®
	RAJZ	SZÁM
	AJAS	M-06

	ANYAGME	GNEVEZÉS	FELÜLETKIKÉSZÍTÉS	
	RAJZ.	DÁTUM	MEGNE	VEZÉS
ozás	JELE	DÁTUM	Structu	ire 02.
/ALT				

MEGJEGYZÉS	DARAB	MÉRETARÁNY
		M 1:2
	Dial	ron®
	RAJZ	SZÁM
	AJAS	M-07

	21212	
MEGJEGYZES	DARAB	MERETARANY
		M 1:2
	Dial	ron®
	RAJZ	SZÁM
	AJAS	M-08

- Main Dilutor - M3x6 hex hub Power Switch

- 12 V DC inlet

M4x8 hex hub

COMB Sheet AJVOL-090

M3x6 hex hub

MEGJEGYZÉS	DARAB	MÉRETARÁNY
		M 1:2
	Dial	ron®
	RAJZ	SZÁM
	AJAS	M-09

	ANYAGME	GNEVEZÉS	FELÜLETKIKÉSZÍTÉS	
	RAJZ.	DÁTUM	MEGNE	VEZÉS
ozás	JELE	DÁTUM	Struct	ure 05.
/ALT				

MEGJEGYZÉS	DARAB	MÉRETARÁNY
		M 1:2
	Dial	ron®
	RAJZSZÁM	
	AJASM-10	

